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ABSTRACT

An autopilot is designed using Sliding Mode Control Theory that can control the
speed and heading of a full six degree of freedom, nonlinear model of the Navy's SDV
Mark 9 vehicle. The control laws are based on a simplified linear model that allows speed
and heading to be treated as separate systems. Once control of headjng and speed is
established, depth control is then achieved by a third control law. Although they are
developed separately, the three individual control laws act simultaneously to provide
robust control of speed, heading, and depth of the nonlinear model of the vehicle. Line
of Sight Guidance is used to convert the way points provided by the mission planner into
commands for heading to which the autopilot responds. The performance of the autopilot
is evaluated over a wide range of speeds to demonstrate its robustness. In addition, the
effects of current are simulated and the autopilot is modified to compensate for the
presence of a strong current.
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I. INTRODUCTION

A. GENERAL

There has been an increased interest recently in the need for autonomous underwater

vehicles (AUV) in both the Navy and private industry. A variety of unclassified missions

include ASW, decoy, survey, reconnaissance, and ocean engineering work. As the cost

of manned submarines increases, there are significant advantages to using cheaper

unmanned vehicles. The AUV should be able to maneuver freely in the ocean

environment with respect to speed, heading, and depth in order to carry out its missions.

Such maneuvering requirements have to be easily accomplished by a low level active

control system, and in the presence of environmental and physical uncertainty.

All information·concerning the environment of a vehicle is detected by the sensing

instrumentation on board the vehicle and sent to the higher level intelligence systems to

be interpreted in order to carry out the mission. The dynamics of underwater vehicles are

described by highly nonlinear systems of equations with uncertain coefficients and

disturbances that are difficult to measure. Robust control using Sliding Mode Control

Theory is. reputed to provide accurate control of nonlinear systems despite unmodeled

system dynamics and disturbances making it a likely candidate for designing the control

laws that will govern the autopilot function of unmanned vehicles.
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B. AIM OF TmS STUDY

The aim of this thesis is to develop a robust autopilot that will control speed,

heading, and depth by the application of Sliding Mode Control Theory. The full six

degree of freedom equations of motion that describe the vehicle are simplified and

linearized to the point that they can be treated as three separate, independent, single input

single output systems. The control laws for speed, heading, and· depth are developed

independently and then combined together to attain effective control of a simple linear
,

model first and ultimately the complete nonlinear model for the vehicle.

Once the autopilot is verified, it is coupled with a Line of Sight Guidance scheme

to allow the autopilot to interface with the higher levels of decision making that provide

way points to describe a desired path for the vehicle. The merits of the total system are

then evaluated for robustness in terms of the range of operating speed over which it can

successfully control the vehicle when compared to the nominal operating speed about

which the equations of motion were initially linearized.

Finally, the effect of current on Line of Sight Guidance is explored and refmements

made resulting in the development of a highly robust and effective system for controlling

the next generation of autonomous underwater vehicles under construction at the Naval

Postgraduate School and elsewhere in private industry.

c. THESIS OUTLINE

In Chapter 2 the equations of motion for the full six degree of freedom model of

the AUV are simplified and linearized. A model for the vehicle is then built using the

2



Matrix-x software package (Copyright 1989 by Integrated Systems Inc.) and sliding mode

control laws are developedt assuming full state feedbackt to control the speed and heading

of this simple linear model.

Chapter 3 shows the application of the control laws developed in Chapter 2 to the

full t nonlinear t six degree of freedom model that represents the SDV-9.vehicle currently

in use by the Navy. In additiont the depth control law which was developed previously

at NPS by Joo-No Sur [Ref. 1] was included to attain control of depth.

In Chapter 4 an observer for sway velocity is designed and tested. It is ultimately

detennined that sway velocity is better treated as a disturbance and consequently it is set

to zero wherever it appears in the control law equations.

Chapter 5 explores using Line of Sight Guidance to allow the way points provided

by the planning function of the AUV to be interpreted into commands for heading.

Chapter 6 investigates the speed envelope of 3 ft/sec to 50 ft/sec over which the

control laws are valid even though the initial linearization was done around an operating

speed of 6 ft/sec. This shows the robustness of the control laws.

Chapter 7 shows the effect of current on Line of Sight Guidance and develops a

modified control lawt including current compensationt that .improves the autopilot t s

effectiveness in currents with speeds up to 50% of the operating speed.

3



ll. LINEAR MODELING WITH MATRIX-X

A. INTRODUCTION

Because the vehicle dynamic equations of motion are relatively easy to linearize,

the rust step of control design for the autopilot was to consider the AUV to be

represented by a nominal linear model. In linearizing the equations of motion it was found

that the equations became uncoupled to the extent that speed control and heading control

could be addressed separately. This led to considering the control of heading and speed

as two independent SISO systems. Using this design approach, the two inputs provided

to the autopilot are the desired heading and the desired speed. No attempt is made to

control depth at this stage in the autopilot design. In fact, it is assumed that all motion

is commed to the horizontal plane. The block diagram representing the autopilot is

shown in Figure 1. This is the actual Matrix-x system build diagram in superblock format.

The remaining portion of this chapter will be devoted to explaining each of these blocks

individually as the autopilot control design, based on the nominal model, is described.

B. AUV DYNAMIC MODEL

1. Identification of symbols

All the symbols that will be used to develop the linear model for the AUV are

identified in the execution program shown in Appendix A. They are listed along with

their units and in the case of constant parameters, numerical values are given.

4
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Figure 1. Autopilot Block Diagram
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2. Simplification and linearization

The nonlinear equations of motion for this vehicle were taken from work done

previously at NPS by Boncal [Ref. 2] who used the dynamic model as established by

Crane, Summey, et a1 [Ref. 3], as representative of the SOV Mark 9 vehicle. While this

vehicle is not identical to any specifically planned AUV, it remains a useful vehicle for

the study of dynamics and control issues.

Only the equations for motion in the horizontal plane are developed in this

chapter. In addition, the complete fonn of these equations will not be shown. Instead, the

assumptions used to simplify them will be stated and the resulting simplified equations

will be shown in their linearized fonn. It should be noted that the linearization was done

around a constant speed fi = 6.0 ft/sec and a corresponding constant motor !pm fi = 500

!pm, with the. vehicle in level flight.

Q. Assumptions

• Motion is confined to the horizontal plane:

(w, p, q, e, 4>, p, q, ~b ' ~8 = 0)

• Some dynamic coefficients are small and can be neglected:

• The AUV is neutrally buoyant.

6



• By design Xg,Yg,Zg are negligible.

• Cross flow drag tenns tend to cancel each other as far as steering moments are
concerned.

b. Longitudinal equation of motion

Where:

a = ( 2 p L2 CDO ) I ( 2 mass - p L'3 Xu )

C
DO

= .00385 + 1.296E-17 [u Lfkvis - 1.2E-7 ]2

p = (.012i a

c. Lateral equation of motion

Where:

~ = ( P L4 Y,. ) I 2

Y1 = ( P L2 Yv u) I 2

Yz = ( P L'3 Y, u) I 2

7

(2.1)

(2.2)



f. Inerlial position rates

i ::: U cas(",,) - v sin(",,)

y ::: U sin(",,) + v cos(",,)

8

(2.5)

(2.6)



3. State space configuration

a. 81801

The state space equation for system 1 that will be used to attain speed

control is· simply the longitudinal equation of motion previously developed and considered

to be in the standard state space fonn shown below.

The components of these matrices are given by equation (2.7).

u = [-a ii] u + [I} n] an

b. 81802

(2.7)

To fmd the state space equation for heading control, equations (2.2) and

(2.3) must be treated as coupled. This was done as follows:

Represent equations (2.2) and (2.3) as:

9



Consequently, this equation can be solved as follows:

(~) =[M r' [C J( ir )=[D ] ( ir ) (2.8)

Combining equation (2.4) with equation (2.8) results in the state space form

to be used for heading control. Since two systems are being dealt with at the same time

this system will be represented by the following state space equation.

Where these matrices are dermed by equation (2.9).

° ° 1 [0]° dl1 d12 (%) + d13 ~r
Od d T dz3

21 22

(2.9)

Equations (2.7) and (2.9) are represented graphically in the Matrix-x system

build diagram shown in Figure 2. Again notice that they represent two independent

10



systems which leads to the next step of detennining the control laws for heading control

and speed control by considering them as separate S1S0 systems. The triangles represent

gain values calculated in the execution program shown in Appendix A.

c. SISOI SLIDING MODE SPEED CONTROL

At this point the control of speed· is easily achieved using sliding mode control

theory. The basis of this theory and its application to controlling the dive maneuvers of

AUV's is documented by Joo-No Sur [Ref. 1]. Consequently, the theory of sliding mode

control will not be included here but rather its application will be shown. Further details

are given in the tutorial by Decarlo et al. [Ref. 4], and in the paper by Yoeger and Slotine

[Ref. 5] for application to underwater vehicles.

Recalling from equation (2.7) that the state vector for this system is simply the

surge velocity (u) and the input is the motor rpm (oJ, the equation for the sliding surface

is written as a weighted sum of the error between the state variables and their desired

values.

(2.10)

According to Liapunov Stability [Ref. 6], global asymptotic stability of the speed error

is guaranteed by the condition:

11
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Figure 2. Linear AUV Dynamic Model

12

dl1



For SISO1 this results in the following equation.

(2.11)

The symbol 11. represents the sliding coefficient for the speed control law. To eliminate

chattering, the sgn function can be replaced without loss of generality by the Matnx-x

function satsgn. Satsgn still acts like a switch, but has the advantage of allowing a linear

increase to the prescribed saturation value which in this case is unity. As a result of this

substitution, and considering the time dependence of 01 to be understood,the expression

now has the form:

(2.12)

The speed control law can be obtained by setting the derivative of Equation (2.10) equal

to Equation (2.12) and substituting for u from the state space equation for SISOl. The

resulting expression for the motor input is:

(2.13)

At this point the values of 111 and SI must be determined. Since there is only one

state variable to consider, SI =1. The choice of 111 will be made through trial and error

using Matrix-x simulation. In general, increasing 111 will make the system more responsive

while reducing it will make the system more sluggish.

13



The speed control law is represented in Matrix-x system build in Figure 3. Notice

that the control signal (5,,) is made up of two parts, one representing the linear feedback

term and the other the nonlinear switching term as shown as follows:

(2.14)

Notice too, that an upper limit of 500 rpm has been included in the system build to

simulate the maximum allowed motor rpm.

S1

Si ma1 2

RPM Limit

21 3

~ Delta RPM 1

~o
Saturatio

till 1

n hat

FiBure 3. SISOI Sliding Mode Speed Control Block Diagram

D. SIS02 SLIDING MODE HEADING CONTROL

Sliding mode control theory is used to achieve heading control by using the state

space equation for SIS02. First the equation for the sliding surface is written as a

14



weighted sum of the error between the state variables and their desired values where the

weights are the coefficients of the sliding surface [Ref. 4].

(2.15)

This equation is simplified by noting that the desired values of sway velocity and angular

velocity are zero. By making this substitution the sliding surface equation for heading

control becomes:

(2.16)

Again using Liapunov Stability Theory to meet the requirements for global asymptotic

stability the following expression is obtained for SIS02.

(2.17)

Next, CJz is found by taking the derivative of equation (2.16), realizing that 'I'd' at this

stage, is considered to be a constant.

(2.18)

By equating equation (2.17) and (2.18) and substituting from the S1S02 state space

equation for the derivatives of the state variables the heading control law is obtained as

shown.

15



8 = [-(112)2 satsgn(CJ2) - (S2 + S3d ll + sl,d21)r ]

r (S3d13 + S4d23)

(2.19)

Notice again, that this control law can again be considered to have two distinct parts as

shown below.

The linear feedback part of the control law is designed to give the system the

desired dynamics while on the sliding surface. The nonlinear tenn is responsible for

getting the system to the sliding surface initially and compensating for any unmodeled

behavior that would drive the vehicle off of the sliding surface once it got there. Once on

the sliding surface, there is no need for the nonlinear tenn unless there is uncertainty in

the model [Ref. 4]. The equations for both of these tenns are as follows:

(2.20)

(2.21)

Where:

16



Unlike the speed control subsystem, the sliding surface for heading control is

multidimensional. In this case the value for ST=[SZ,S3,S..lT is detennined by considering

the closed loop dynamics of this system in the sliding condition (b,o =0). Under this

condition the state space equation for SIS02 becomes:

(2.22)

By writing equation (2.20) in tenns of ST and the state space matrices, the following

relationship is attained.

(2.23)

Combining equations (2.22) and (2.23) gives:

(2.24)

Note that equation (2.24) is in the fonn:

Where:

Consequently, equation (2.24) can be represented as:

17



In this fonn [AC2] is the closed loop dynamics matrix. Atthis point K can be found

using pole placement techniques. This is done by specifying the desired poles that will

detennine the behavior on the sliding plane. It should be noted here that in accordance

with Sliding Mode Theory, one of these poles must be at the origin thus leaving 2 poles

to detennine the closed loop bandwidth and damping [Ref. 4]. Using Matrix-x this is done

as follows:

Now that a value for K can·be found, ST is obtained by multiplying both sides of

the equation for K by STB2 • This gives the result:

Which is also correctly expressed as equation (2.25).

(2.25)

At this point the fact that [AC2]T has one eigenvalue that is zero is utilized to

complete the solution of S by considering the standard eigenvalue problem ([ACz]T -I)V

= O. For the case when the eigenvalue is zero, [ACz]TV = 0 . Comparing this expression

18



with· equation (2.25) it becomes apparent that the eigenvector V in the general case

becomes the vector S for our circumstances [Ref. 7]. Consequently, S is determined by

the eigenvalue function available in Matrix-x. This calculation is performed within the

execution program shown in Appendix A.

The next step is to test the control law via simulation by adjusting the values of 111

and the poles to obtain the desired control characteristics. The Matrix-x system build

representation of the heading controller that was used for simulation is. shown in Figure

4. Notice that the satsgn function has been modified. Its slope has been adjusted to

provide a fIlter for numerical chattering. The saturation limit of the satsgn function

represents the boundary layer thickness ep as developed by Slotine [Ref. 5]. Since the

range of values of the satsgn function is between -1 and +1,a multiplication factor of l/ep

must also be included.

Selection of the boundary layer thickness is a design issue. In Figure 4, the value

is set at .1 based on many simulation runs. This in turn requires a multiplication factor

of 10 to be included in the block diagram.

E. SIMULATION RESULTS

The goal for the controller was to reach the desired heading and speed in the

shortest time possible and avoid inefficient use of the control inputs while doing so. Many

simulation runs were conducted to obtain the best values for 11., 1lz, and the poles for

the dynamics of the sliding surface of SIS02. In addition, reasonable values for the

19
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the heading to 90 degrees from an initial value of zero. The results show a good response

with efficient use of the control inputs. These results are typical of the many trials that

were run to verify the control laws. The next step is to apply these control laws based on

a simplified, linear model, toa more realistic nonlinear model to see if they can still be

effective in controlling speed and heading.

22
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ill. CONTROLLING THE NONLINEAR AUV

A. INTRODUCTION

Two main questions are addressed in this chapter. First, will the sliding mode

control laws for speed and heading developed in Chapter 2 using a simplified linear

model for the AUV be able to control a more realistic nonlinear model of the AUV. The

nonlinear model that is used was originally developed by Boncal [Ref. 2], based on the

Mk 9 swimmer delivery vehicle and most recently used by Joo-No Sur [Ref. 1] in his

design of a SMC depth controller. It is in the form of a Fortran code and is shown in

Appendix B.

The second question to be answered is whether the control laws for speed and

heading control can be simply inserted into the Fortran model as two independent

modules and work harmoniously with the depth controller already present. If this is

possible then the task of three dimensional control of the nonlinear six degree of freedom

model can be accomplished by 3 simple SISO systems rather than a complicated MIMO

system. Recalling that many simplifying assumptions were made to develop the linear

model that are no longer valid for the nonlinear model and that some of the assumptions

for one of the SISO systems may be in direct conflict with the others, it is likely that

significant unmodeled behavior will have to be handled by the nonlinear switching terms

in the SMC control laws.
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B. 8PEED CONTROL [81801]

Recall from Chapter 2 that the best value of 11.' was .6. Utilizing Matrix-x to get

the necessary coefficients, the speed control law was obtained and programmed into the

Fortran code as shown in Figure 6. Notice the use of IF THEN statements to provide the

satsgn function and to establish an RPM limit.

********RPM INPUT CALCULATION *********
SSI ..U-UD
IF(ABS(SSI) .LT. 1.0) SATSGNl=(SSI/I)
IF(SSI .LE. -1.0) SATSGNl=-1.0
IF(SSI .GE. 1.0) SATSGNl=I.0
RPM=-1153.9*SATSGNI + 83.33*U
IF (RPM .GE. 500.0) RPM= 500.0
IF (RPM .LE. -500.0) RPM=-500.0

Figure 6. Sliding Mode Speed Control Fortran Code

C. HEADING CONTROL [81802]

The Matrix-x simulations provided the necessary values for the control law. Recall

that a value of .4 was chosen for 11l and that the pole location of [0, -.41,-.42] was

selected. This resulted in the following heading control law shown in Figure 7 that was

programmed into the Fortran model. Notice that the maximum rudder deflection has been

limited to ± .4 radians.
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*******RUDDER INPUT CALCULATION*******
SS2-.5732*(PSI-HD) - .0739*V + .8161*R

IF(ABS(SS2) .LT..1) SATSGN2=(SS2/.10)
IF(SS2 .LE. -.1) SATSGN2=-1.0
IF(SS2 .GE.. 1) SATSGN2=1.0

DR-2.5785*SATSGN2 + .0328*V + .1112*R
IF (DR .GE. 0.4) DR = 0.4
IF (DR .LE. - 0.4) DR = -0.4

Figure 7. Sliding Mode Heading Control Fortran Code

D. SIMULATION

With these two primary modifications to the Fortran model, the same maneuver that

was shown in Chapter 2 using the linear model was now attempted for the nonlinear

AUV. The control laws were very successful at achieving the desired speed and heading

as can be seen by Figure 8. The effects of the unmodeled terms were present, but

stabilized by the nonlinear switching term in the control laws conf"mning the robust nature

.of sliding mode control that make it particularly desirable for this application. The

response was more sluggish and .more control effort was required than for the linear

model. This was expected however since the nonlinear model contains terms to represent

the increased loss in a turn which the linear model did not. A comparison to Figure 5, in .

Chapter 2, shows that it took about 15 seconds longer to reach the desired speed and

almost 30 seconds longer to reach the desired heading. These results seem very
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satisfactory since the use of the motor and rudder inputs were at their maximum values

throughout most of the run and consequently utilized to their full capacity to reach the

desired conditions.

To answer the second question the same maneuver was commanded with a depth

change of 20 feet included. It should again be pointed out that the depth control law was

developed independently by Joo-No Sur and used without any modification [Ref. 1]. The

results are shown in Figures 9 and 10. Notice that the depth control law accomplished

the commanded depth change independent of the course and speed adjustments. The

control effort of the dive planes seems very efficient as does the use of the rudder and

motor RPM. All three of these control laws are acting simultaneously and independently

but together they produce the desired result.

To further demonstrate the independence of these 3 SISO systems, two additional

runs are shown. First, the 20 foot depth change is commanded without requiring a change

in heading. The depth change characteristics are then compared to those for the previous

simulation in Figure 11. The left column is the run with a depth change only and the

right column shows the depth change while the vehicle is also making a 90 degree

heading correction. Notice that the results are almost identical showing that depth control

is not adversely affected by a change in heading.

Similarly, a 90 degree turn was commanded without requiring a depth change and

compared to the combined diving and turning maneuver. The results are compared in

Figure 12. The left column represents the tum only while the right colunm shows the

same tum during a 20 foot depth change. Again the results are nearly identical showing

28



I

J
V

~-

,

C)

CJ

o
ID

>-t
C)

0

CJ·0
V)
I

C:l

0.0 30.0 60.0

X (F'T 1
90.0

'<t'
(,J·C)

o

f'J
a::~

L:b
CD
>--l(O

In 0
o
o
o·o

r--..
- '"\

~

\-

\ ---........
-

0.010.020.030.040.050.0

TI1-1E (SEC)
CJ
m

o

CJ·':=1

o
o
m

o·o
(D

1---'0
L- •o'-' n

)-to

o
o
CJ
10
I

/ --
-- 7

- I
-~

/
0.010.020.030.040.050.0

TI t'lE (SEC)

I

1/

--""
/

0.0 to.O 20.0 30.0 40.0 50.0

TII'IE (SEC)

o

-.J
0......

0 ·Zo
0:::
W
t=; ('~

o
I

o

o·o
o·(()
I

-

V V

0.010.020.030.0 40.050.0

TI t-'lE (SEC)

....... ...... , ....... ....... ':';';':":':

/
/

V
../'

(1.0 10 . I) 20.0 30.0 40.0 50.0

THIE (5E(:)

Figure 9. Simulation Including Depth Change (Nonlinear AUV)

29



o

-'
I

'V",

o
o
lfl

o
o
'V"

o
o

L r0
0... 0
0:::0

r,]

o
o

o

'0
J

ON
2
CI:

o

v V

,/
/

I
/

V .
o.0 to. 0 20.0 30.0 40.0 50.0

TIt1E (SEC)

\

"
0.0 to.O 20.0 30.0 40.050.0

TIt1E (SEC)

V
/"

,/
/

/
I

V
0.010.020.030.0 40.050.0

T I11E (SEC)

n
o

o
o

(,J

CI: t-;
LO
(9'
I---l

UJ (~

o
I

m·o
I

·o

,-, (,J
o .
a: o
n:::
~' 0

·0::::: 0

W
o 0Jo .
~o

n:::'
"t"·o
I

o
o

o
CD

o
I~

o
2 0
CI:"t"

I o
N

o

I
V

/-
0.010.020.030.040.050.0

TI~1E (SEC)

~

\

o.0 10 . 0 20. 0 30. 0 40. 0 50.0

TI ~1E (SEC)

....... ........ ....... ..........
~

/
V

/
I/'

/
0.010.0 20.030.0 40.050.0

TIf'IE (SEC)

Figure 10. Simulation Including Depth Change (Nonlinear AUV)

30



'1'
cJ
· -;-----.....--.---r

o

",,'
('J·.. --- -- --.-----.---~
o

(0
.-'f

0.0 10. 0 20. 0 30. 0 01 0 . 0 50.0

TIt'IE (SEC)

o

N
u: --:_
}: 0
'.:.!.I
t-4lO
U') a·-a

o
o·o_~ ~ __.

~-I----'-H---t
o

0.010.020.030.040.050.0

TH1E l SEC 1

o
o
o·o __ -_..~--.J--- ..l

('.)

CC.-'f;_ 0 -.--+---n..--J---- --

,~,

~lO

(no
.- --1----1

-I'

o tr--.,.---r-~-- ----- -- o

o
u:::
0.::: 'CJ

C1

a

v·
L.O"--- V-n:::
w
f-<
'n (~
?------~-----

0.010.0 20.0 30.0 -10.050.0

TIllE (seCI

..J
(La
~ ,------
L- 0
n~:

hJ
f-t
If) ('~

1-'T -- --- -- ----- --

0.010.020.030.0 40.050.0

TIHE(SEC)

--

'1' -,---.----?---r----r------.
c'.)

o ..

_--. ~---e- /;;=
f-< (,J-- -- ,-

t~~: j- -
· - -- ---1-.+--1---

!'-1 : /V
o
o

'f 4----1--- -- -- --

fJ •0 10.0 20. fJ 30. 0 .1tJ. 0 50. U

TII'IE t.3C(:I

o .
oj - -- -- ----

f-:~ .. ---- /--

: 2-- --bL.----
~ /o ------
o.
T' .. --- --- --- ----

IJ.O 10.020.') 31J.0 -10.050.0

TIllE (:;CC)

Figure 11. Effect of Turning on Depth Control

31



10a: .
L:?
(9
.--.
In ~

o
I

m·o
1

l1.0JO.0 20.0 30.040.050.0

T I f'lE (SEC)

o

o·o
C',)

--_.
V

-

V
-

/'
- --

10

o

o
o

(',)

a:: I'~

LO
(Ell
.--.
(() ~

o
I

ITI·o
I

-

- -- ..-
j

- v
V

.. _-
0.010.020.030.0 40.050.0

TIHE (SEC)

o

('J
C) ._
(1: 0 --1---+--

u:.: ~ __ .~
(t::: 0

W
~ ('Jo .
=:> o·
0.::: 1

'<t<·?-fl--t-~t--;-~-1-

0.010.020.030.0 40.050.0

TI f'IE (SEC)

CJ

.- ('Jo .
a: o
n::::

o·It::: 0

l.d
oo ("~

=:>0
0.::: 1

~·o
1

--- .--- ._-

~---.---

- -- --

-
0.0 10 . (I 20.0 30.0 40.0 50.0

TI"IE (SEC)
o
0-,---.,.--.,.---.--....----,....
o
co

o
~ ~ -1--1--1--+-1

:Co
(,J -I---f----'-h"'"--I

CJ -I---""'F---f---t

O.OJO.O 20.0 30.0 10.050.0

THIE [':iEC)

o
o

o
co

o
:c 0

ill

o
::Z:o
a:~

:Co
03

....... ....... ....... .......V--

- /
V

- /
.'

1.....•../

(I • 0 10 . 0 20. 0 30. 0 10. 0 50. 0

TIllE (:.EC)

Figure 12. Effect of Depth Changes on Heading Control

32



that heading control is not adversely affected by a simultaneous change in depth.

E. CONCLUSION

In view of these results it can be concluded that the desired three dimensional

control of the full six degree of freedom nonlinear vehicle can be accomplished by 3

S1S0 systems thus avoiding the need to model the AUV as a MIMO system.

Some problems still remain however that will be addressed in subsequent chapters.

First, the control of heading is based on assuming full state feedback which includes sway

velocity. To be realistic, since sway velocity is not directly measurable, an observer will

have to be designed. In addition, a more global objective is to ultimately cause the AUV

to travel to a desired way point rather than simply achieving a desired heading. Though

our approach of developing the control laws as separate S150 systems has been validated

at this point, it still remains to develop a guidance scheme that can interface with these

control laws to achieve path following in the horizontal plane.

The design of the sway velocity observer is dealt with in Chapter 4 and the issue

of guidance in Chapter 5.

33



IV. SWAY VELOCITY OBSERVER DESIGN

A. INTRODUCTION

The heading control law as presented in the previous chapters is based on full state

feedback. In reality, the sway velocity (v) will not be measured thus requiring an observer

to be designed that can estimate its value. The approach that will be taken is to utilize

observer theory to obtain the necessary equations for a reduced order observer and then

use the Matrix-x software program to obtain the necessary coefficients for these equations.

The depth control law as shown for the runs thus far utilized a full order observer [Ref.

I]. Since the speed control law must be based on full state feedback, sway.velocity is the

only state variable which requires an observer at this point.

B. OBSERVER DESIGN FOR LINEAR AUV

The state space equations for SIS02 is given in Chapter 2 by Equation 2.9. The

state space vector is rearranged to separate the measured from the unmeasured states

resulting in equation (4.1).

(4.1)

To develop the reduced order observer, the state space matrices will be partitioned

as shown in equation (4.1) and rewritten as follows.
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(4.2)

The output system of equations is then written in the fonn Y=[C]X as shown below.

(~ =(.) =[~ ~ ~] (i) (4.3)

Partitioning the C matrix and the state vector Xo to separate the measured and

unmeasured states gives:

(4.4)

At this point the relationship shown in reduced order observer theory can be

systematically applied to complete the observer design [Ref. 8]. Note, Xo1 represents the

measured state variables and Xoz is the sway velocity that is to be observed.

Consequently, the following equation is obtained.

X-:'2 = v = [LL] (Y) + [ZZ] (4.5)

In order to better understand the following relationships that are used to find [LL]

and [ZZ], a block diagram is of the observer is shown in Figure 13.
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The values of [FF), [GG), and [H) are given by the following equations.

36
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It will be necessary to consider [LL] and [GG] to have two parts resulting in

[LL] =[ll,lz] and [GG] =[ggl,ggZ]' Upon substituting into the above relationships the

following equations are obtained.

(4.9)

(4.10)

(4.11)

Notice that the above values are all scalars and· that [LL] is the only part of the

observer equation yet to be detennined. [LL] will be found using pole placement as

follows:

I S-FF I = I S - d12 - 11 d22 I (4.12)

Since Iz is not included in equation 12 it can be considered arbitrary and assigned

a value of zero. The resulting equation for 11 = [LL] is:

(4.13)

It is at this point that Matrix-x was used to detennine the coefficients necessary to

calculate the observed value of sway velocity. In addition simulations were conducted to

compare the observed value of sway velocity to the actual value. The best results were
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obtained by choosing FF to have a value of -2 giving the following equation.

Where:

(4.14)

FF ... -2 , ggl ... -57.827 H"'-15.575 11 ... -104.850

The Matrlx-x system build block diagram which was used for the simulation is

shown in Figure 14 and the entire autopilot with the observer included is shown in Figure

15.

11

H

92

ZZddot

9

zz

+

Figure 14. Reduced Order Sway Velocity Observer
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Figure 15. Autopilot With Sway Velocity Observer

The same maneuver simulated in Chapter 2 and shown in Figure 5 was again

simulated using the estimated sway velocity. A comparison of sway velocity and its

observed value is given by Figure 16. The observed value is exactly the same as the

actual showing that the observer has been designed properly. The rest of the run is
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included as Figure 17 conftrming that the autopilot with the reduced order observer is

operating properly. The next step is to.include the sway velocity observer into the Fortran

code representing the nonlinear AUV.
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C. APPLICATION TO NONLINEAR AUV

The initial attempt to use the observer equation was unsuccessful when applied to

the nonlinear AUV. The clue to the problem came by noticing that the only time the

observer worked well was if the initial value for the surge velocity (u) and the command

speed were both 6 ft/sec (the nominal linearization speed). To overcome this problem and

allow for a more accurate estimate of the sway velocity throughout its range of operation

the Matrix-x model of the AUV was linearized around a variety of speeds and the various

coefficients were recorded. Curve fitting techniques were then employed to relate these

coefficients to the surge velocity (u) so that the nonlinearities actually present in the real

vehicle could be better accounted for. The resulting values for the coefficients are shown

in Appendix D along with the equations which resulted. These equations were then

included in the Fortran code and the same simulation run was repeated with the improved

adaptive obserVer providing the estimate of sway velocity. The results are shown in

Figures 18 and 19. From the simulation it is clear that the control laws continued to work

well.

The difference between the observed value and the actual value are shown

graphically in Figure 20. This figure shows that the observed value is a fair approximation

for v allowing accurate·control of the vehicle. The accuracy could possibly have been

improved by linearizing around more speeds to get a better set of equations for the

coefficients but since the value of v is so small the impact of assuming it to be zero was

explored prior to attempting to refine the observer any further.
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D. EFFECT OF ASSUMING SWAY VELOCITY NEGLIGmLE

Figures 21 and 22 show the effect of setting the sway velocity equal to zero 8i1d

commanding the same turn and speed increase as shown in FigUre 16. The perfonnance
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of the heading control law is virtually the same! It is a tribute to the robustness of sliding

mode control that sway velocity is best handled as an unmodeled disturbance than an

observed quantity.

E. CONCLUSION

In view of these results, the autopilot will be designed upon the assumption that the

sway velocity equals zero. This will simplify the autopilot and increase the speed at which

the calculations are performed. Consequently, the problem of improving the observer

design is eliminated and SIS02 is effectively reduced to a two state feedback system.

This decision may have to be reevaluated if disturbances or currents are added to the

model that cause the sway velocity to vary more than can be handled by the nonlinear

switching term in the heading control law.

46



1

.-

V V
--

r--..
~

\
.-

\-

'\
t---....-

'f ~ ._- ---·J--t---'--t----l

fJ. I) 10 . 0 20. (I :{I. (I 40. 0 50. I]

TIllE I '=,EC )

·o

a
-t'~--.----.---r---Y-----,
("-J

o

co.....

0.010.020.030.0 40.050.0

TIt-1E (SEC)
·o

I) • I) 1(1.0 20.0 30.0 40.0 50.0

TI t1E (SEC)

o
a::::
0:::: eJ

'-'0

t ..l I.D

a

-l
!L a·20
[t::
W

~ r!
,.....,
r

c·,)
0:: ............
"- 0
CD
1--<<.0
en b

o
o
o·

o ,"."," ':':":":':':
co

.~~ 1/
E-< C\I -+---+---+---Y'----I----I
tt......... /
'--' 0

~V
o -+---+-~-I---l---+---j

90.030.0 60.0

X (rrJ
0.0

L
)

.--/"
V

;

/

V
~

V

. -- --

o
10
I

o.
r:::::> -+-"'---t-~.+---

o
o
0'

0.010.020.030.040.050.0

TII-1E (SEC)

o
o
ID

o
o
1'1
I

O. (1 to .0 20. 0 30. 0 'W. (I 50. (I

TI lIE (~iEC .I

o.
o

o ~--.---.---.---.-----,,::n

>::: ~ -+---+---I."--J
I'")

o
o
Q)

o
o
ID

f--to
LL •o
~ Vl

>-,
o

f-' 0
LL •o
~, 1'-'

Figure 21. Sway Velocity Set Equal to Zero (Nonlinear AUV)

47



-.,

o --1---+---+---"--"-'---1

aa - --I---l-----I--+-~

(La
tt.. a - -- --- -_..- ---

(' ·1

0.010.020.030.040.050.0

TIl-IE (SEC)

0.010.020.030.040.050.0

TI t'IE (SEC)

.. ~

'=

---
/.' .

II
- -

/
[7

/
V---

o
o

CJ

C'

o
o

o
eJ

C'-.] Q
4'a: 0

LC'
f:.E1 tb
~ 0

en ?
co

o
-'
I

.
a

-~ ('-J
o .
0:: 0

0.:::::

t1< C'
W
9 ("J
LJ •
.-J 0
0.:::'

-rt'
o

C'
I

- 1.7

V
1/

--

- /
V

/

V
!

o.0 10 . (I 20.0 30.0 40.0 50.0

T111E (SEC J

7'
I

a
a-n---r---r---~-r-r---.

~ \
~ -11---+--+--..--1--\,,--1
aa --4----!----I-----'----4---.•-

_ t',
2.._

o

0.010.020.030.010.050.0

TI t1E {SECI

a:: r'l
2-'
c..9
>-<
Ifl V)

I

'0 .0 10 . 0 20. 0 30. 0 ·to. 0 50. 0

TI'-IE I SEC'

0("'.1

Z
0::

/-r-
1/

/
V

/

1/
- --

o
o

o
(0

o
:co

(f)

o
Zon:: ort'

:Co
("\)

......... ......... ....... ........ 'r--

/
1/

..

J
l,.,/

0.0 10.0 20. 0 '~IJ. 0 40.0 50.0

THIE ":tECl

Figure 22. Sway Velocity Set Equal to Zero (Nonlinear AUV)

48



V. GUIDANCE

A. INTRODUCTION

The guidance portion of an AUV is the link between the mission planner and the

autopilot. The mission planner decides the coordinates of the way points the vehicle must

travel to and the vehicle's speed. The autopilot, as explained in the previous chapters,

requires inputs of desired heading, depth,and speed. Though speed and depth can be

given direcdy to the autopilot, a guidance scheme that will convert the x and y

coordinates of the way point into the required heading command must be developed. The

method of guidance that was selected is called Line of Sight Guidance (LOS). In this

chapter, the basics of LOS are explained and the critical aspects of an autopilot based on

LOS are examined.

B. LINE OF SIGHT GUIDANCE

1. Fundamental Relationships

Line of Sight Guidance determines the desired heading by using the vehicles

current position and the coordinates of the next way point. As its name implies, LOS

essentially points the AUV at the next way point along the line of sight no matter where

the vehicle is located. Notice that some sensors, for example an inertial navigation system,

must be available to determine the current position of the AUV. Figure 23 shows how

the desired heading ('I'd) can be simply obtained from the coordinates of the current
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position (x,y) and the coordinates of the next way point (x..,y.) by using the ATAN

function.

(Xd,Yd)

o~ot>L..---L.-.-.:..'I<~d-~
(X,y)

-- ATAN [(Yd-Y)/(Xd-X)]

Figure 23. Finding the Desired Heading

Notice that in Figure 23 a tum to port is the obvious choice but if the .next

. way point had been in the fourth quadrant a turn to starboard would have been more

efficient. 11rls shows the need to compare which tum will allow the desired heading to

reached with the least amount of course correction. To understand how this was done, it

should be pointed out that '1'. will have a range of values -7t<'fl.<7t. To account for the
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cases when 'Vel is negative, 2ft was added to "'eI to give 'Velp' Next, a comparison of the

absolute value of the angular difference between the desired and the actual heading was

made. The choice of 'Vel or'Veip was based upon which of these gave the smaller course

correction. This value that was called "'elm and was value given to the heading control

law as the desired heading. Finally, it should be pointed out, that if the term <"'elm-"'> in

the heading control law is positive a tum to port will result. Consequently, if it is negative,

the AUV will tum to starboard. An illustration of the selection of the best tum direction

is outlined in Figure 24.

t = 311/4

Shortest

TU~~
'I'd == -'3fI/4

't'dp= rsrr/4

I 'I'd - 'I' I= 3 ,,/2

I tdp - t I= ,,/2

tdm = 5 ,,/4

tdm - 'I' = ,,/2

+ => Turn to Port

Figure 24. Choosing the Smallest Heading Correction

2. Interface parameters effecting performance

There are several factors that impact the equation that determines the desired

heading and consequently the effectiveness of the system as a whole. These factors are

51



discussed at this point so that the results of the upcoming simulations can better be

appreciated.

First,· how often does the autopilot receive an update as to its current position

from the navigational instrumentation on board. This will effect the accuracy of the

calculation of "'d as will the accuracy of the navigational instrumentation itself.

Next, a criteria must be established for considering the AUV to be considered

close enough to the desired way point that the next way point should be provided by the

mission planner. This has the effect of aiming at a target with the desired way point at

its center and will account for the advance and transfer of the AUV. The dimensions that

are established for this "zone of acceptability" will directly affect the amount by which

the AUV overshoots one way point on its way to the next.

The turning and diving characteristics of the AUV must also be considered.

A way point must be far enough away that the AUV can physically maneuver to reach

it. On the other hand, the more frequently the way points are specified the more control

the mission planner can exert on where the AUV is while in transit between two way

points.

Finally, the environment the AUV is in must be considered. Factors such as

currents can greatly affect the accuracy with which the AUV can be controlled. The

number of obstacles that must be avoided and hence the greater need to prescribe a path

rather than just a way point will also be an important factor to consider.

Keeping all these factors in mind, it is clear that the mission planner, guidance

scheme, and autopilot must ultimately be evaluated as a system with a particular mission
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rather than three independent functions. It is in this context that the following results are

presented.

3. Results

Run 1 shows the versatility of the system using LOS guidance under the

following nearly ideal conditions.

• (x,y,z) position updates are accurate and are provided every .1 sec.

• Way points are distant enough to be well within the turning and diving capabilities
of the vehicle.

• The target.radius is one shiplength.

• No disturbances or obstacleS.

The mission that is envisioned is that of a straight line transit followed by a

slow speed search. It will require both port and starboard turns and increases and

decreases in both depth and speed. The way points are identified in the horizontal plane

by crosshairs and the desired depth and speed are represented by dotted.lines. Figure 25

shows the results of the simulation. The AUV went to each way point that was specified

and did so at the required speed. The control action of the rudder , dive planes, and motor

were very efficient. This run has to be considered to be highly successful thus proving

LOS to be a valid guidance method. Notice that the mission ends with the AUV one

shiplength away from the last way point waiting for the new way point to be provided

by the planner.

The frrst parameter that was changed was the time between updates of the
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actual position of the AUV. The first signs of a decline in perfonnance became evident

when the update time reached 5 seconds. The results are shown in Figure 26. The control

was still very successful which shows how tolerant WS guidance is to inaccuracies in

detennining the AUV's position. Notice however that there is an increase in the control

effort for the rudder. The fluctuations that result whenever the update is received are not

optimal so it is recommended that the update time be kept below 5 seconds.

The update time and the accuracy with which the AUV's position can be

detennined will become more and more important as the way points become more closely

spaced in an effort to achieve even greater control of the transit path. Notice that these

way points are approximately ten shiplengths apart.

The next simulation runs explored the effect of the size of the target radius.

The optimal target radius was determined to be two shiplengths. The improvement that

a two shiplength target radius resulted in as compared to a target radius of one shiplength

can be seen by comparing Figures 25 and 27. Since the next way point is provided one

shiplength sooner, the control action required to reach it can be initiated earlier. The old

way point is still reached by virtue of the momentum of the AUV but the amount by

which the AUV overshoots is decreased. This reduces the total path length and

consequently improves the overall perfonnance. A target radius of two shiplengths seems

to work best since increasing it any further would result in missing the original way point

by too great a margin as the AUV redirects itself toward the newly assigned way point.

The effect of the frequency with which the way points are given was explored by

the next simulation run. In an attempt to improve the perfonnance of the AUV two
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additional way points were included in between those originally provided. This was done

in an attempt to cause the AUV to take more of a straight line path to the next way point.

The additional way points were in line with the original two and were located about five

shiplengths away. Five shiplengths is the turning diameter for this vehicle so the idea was

to get a maximum turning effort initially and then follow a straight line for the second

part of the path. The target radius for this run remained two ship lengths but the position

update was 1 second since the way points are closer together. Figure 28 shows the results.

A greater degree of control of the AUV is attained and a shorter distance of travel is

required. The improvement can be easily seen by comparing Figures 27 and 28.
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VI. mGH SPEED APPLICATIONS

A. INTRODUCTION

The design of the autopilot and LOS Guidance system is based on a nominal

operating speed of 6 ft/sec. This chapter explores the capability of the autopilot and

guidance system to successfully control the AUV during high speed operations. The goal

is to control the AUV at speeds as high as 50 ft/sec (30 knots) and as low as 3 ft/sec.

This wide range of·operating speeds will result in an extremely large change in the

vehicle's hydrodynamic coefficients. Recalling that the control is based on a model that

was linearized around a speed of 6 ft/sec, it becomes clear that this will be a severe test

of the robustness of the sliding mode control laws.

To better appreciate the extent of the unmodeled behavior, graphs of pitch and pitch

rate are included in the simulation results. Recall that they were both considered to be

zero during the simplification of the equations 'of motion for 81S02.

As was mentioned previously, the depth control law has been based on observed

values of pitch and pitch rate up to this point. This is advantageous for a small vehicle

that does not have enough room for the instrumentation necessary to measure these

values. For an AUV capable of a 30 knot operating speed however, it is assumed that

there will be instrumentation onboard to provide these measurements. Consequently, the

simulation will be done assuming full state feedback with the exception of the sway
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velocity. Sway velocity will still be given a value of zero and handled as a disturbance

as was explained in Chapter 4.

B. AUTOPILOT SIMULATION RESULTS

The first set of simulation rons test the ability of the autopilot to achieve the desired

heading, speed, and depth. The capability of the LOS guidance system will be

demonstrated later once the autopilot has been verified.

1. Run 1

The conditions for Run 1 are as follows:

• Command speed

• Command depth

• Command heading

• Integration time step

18 FPS.

2 Shiplengths

90 Degrees

.01 Sec.

This run tested the ability of the autopilot to operate at a speed three times

greater than it was designed for. Before satisfactory results could be attained at higher

speeds, the integration time step had to be decreased. The relationship between the surge

velocity and the integration time step is found by expressing it in a nondimensional time

as shown in Equation 6.1.

NDAt = U At/L
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This relationship shows that if the nondimensional time step is to remain

constant, the time step used within the simulation must decrease as the sPeed increases

to obtain the correct results. By referring back t.Q the initial work at slow speeds, the

value for the nondimensional time step was found to be .1. Based upon Equation 6.1, an

integration time step of .01 sec was chosen for the surge velocity of 18 ft/sec.

The results as shown in Figures 29 and 30 are outstanding. The autopilot operates even

better at high speed. All desired values are attained with a minimal amount of control

effort" and with no modification of the control laws. The autopilot is now ready to be

verified using the boundaries of its design envelope.

2. Run 2

The integration time step was decreased to .005 seconds for this run at 50

ft/sec to be consistent with keeping the nondimensional time step constant. In addition the

Auv is given an initial surge velocity of 50 ft/sec rather than starting from rest to show

the effect of a high SPeed turn. The remaining characteristics of this run are the same as

Run 1. The results are shown in Figures 31 and 32.

Again the results are very good with no problems evident. This result is a most

impressive verification of the robustness of sliding mode control.

3. Run 3

Run 3 is included to show that the autopilot is also capable of slow speed

operations at 3 ft/sec. An integration time step of ..1 seconds is adequate for this speed.

Figures 33 and 34 show that the AUV is more sluggish at the slower speed but the

control laws have no problem attaining the commanded heading, speed, and depth.
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4. Conclusion

The autopilot has been verified to have the robustness necessary to operate

within a speed range of 3 ftlsec to 50 ft/sec. The integration time step can be set at .005

sec for all values of operating speed or it can be related to a constant nondimensional

time step of .1 using Equation 6.1. The advantage of varying the time step is that the

calculations are perfonned faster for the slow speed runs where the time step can have

a larger value.

C. LOS GUIDANCE SIMULATIONS

The final link. in establishing that the AUV is ready for high speed operations is to

show that LOS Guidance can still steer it through the desired way points at a speed of

50 ft/sec. This will be demonstrated by commanding the same basic maneuver perfonned

in Chapter 5. To decrease the time needed to accelerate to the new higher speeds, the

simulation will start with the AUV already at 50 ft/sec when the fIrst way point is

provided. The way points themselves will be further apart as is appropriate for high speed

travel.

1. Run 4

The conditions for Run 4 were as follows:

• Conunanded speed

• Integration time step

• Target radius

• Navigation update time

50 Ft/sec.

.005 Sec.

2 Shiplengths

.005 Sec.
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The results of the run are shown in Figure 35. Though the AUV passed

through all of the way points, the control of speed is not satisfactory. In exploring the

speed control law for SISOI, it was detenninedthat the nonlinear switching tenn was not

strong enough to call for the necessary motor rpm to maintain the speed characteristics

on the sliding surface.

2. Run 5

For Run 5 the value of the coefficient of the switching tenn was increased to

4000 thus enabling the switching tenn itself to call for enough rpm to result in a 50 ft/sec

speed. With this modification, the speed control law for SISOI becomes:

RPM = -4000.0 satagnl + 83.33 u
(6.2)

With this new speed control law in place, the same maneuver was again

commanded. The results are shown in Figure 36. The control of speed is now much better

and the AUV still passes through the desired way points. Notice that when the desired

speed is not attained, the control now calls for the maximum effort, which is 5000 rpm,

from the propulsion motor. In order to improve speed control any further, a larger

propulsion system would have to be utilized.

3. Run 6

This run explores the maximum Navigation update time interval that can be

tolerated at high speeds before a decrease in perfonnance is detected. Various runs were

conducted with the frrst signs of trouble occurring when the navigation update time was

I sec. The results for this run are shown in Figure 37. The need for a shorter Navigation

70



CJr,)
(f)

I~
f-....
(!)q
;.:::- ~
ld
_J IJ:'

(I-
........ 'T'
I
en
'-' 0

...-

- "- \f'-

....

U

.--~
:9 LJ

\

~
\ I,..--...

t-/
~
y.....>

o.0 4.0 8 .0 12. 0 16 . 0 20. 0

X (SHIP LENGTHS)

o
n

(f)

W
Win
0:::: .......
c.9
W
o/>
~ -

n::::
Win
0 .......
o'
:::J
0:::: 0

n
I

0.0 15.0 30.0

TI t"IE (SEC)
45.0

45.0

45.015.0 30.0

THIE (~,EC)

15.0 30.0

TllvlE (SEC)

0.0

0.0

...-
r

.... .... .1\
V If

,
II

o
8-.--------r----T---...
(.0

o

o
~.... ,. 11---+----.\-----/--1+----1
"1"

o
o
'<t'

n -+----+c----+.---~

L
lL
0::::0

$ -+----\--I--I----f---------1
V)

-l
0.-.. In

z'n::::
Wo
f-l 1-')

{J') •

.~ 0
U') 10

uJ
W
O::::lf)
C9 .......
W
o

45.0o.0 15 . 0 30 . 0

TIrlE (SEC)

o ~ -+-----'..-4:.'----~---l

Z
a:
! S -t----t-----+---~

Ul 'T' -.r-----r------y----,

I
f--<
C!J
Z CJ -1r---4----.J----l
ld
--.J

I
f-<
(L ~
W • -+----t-----+------1
o 0.0 15.0 30.0 45.0

TI"lE (SEC)

U
lLJ
~l ~ 4---+--t--Hl--t---~
'.

(I- "1"
.........
I
en
'-' IJ:', -+--+--=--'t--~_l'--If_-____i

Figure 35. Run 4, High Speed, Multiple Way Point Maneuver (Initial Control Law)

71



o.0 4. 0 8 . 0 12. 0 16. 0 20.0

X (SH I P LEI'Jf~THS.l

r-

~I~

I
U

o
r,J

(/1 (0

I .......
(---t

~ (\)
..<-- --'
CLl
-,-I 0:>

CL
~"'T'

:r:
If)

'-' 0

- L--- -....
.;:::--J t :

r\ --- -" f-.....
~

~

'<-

-

o
I r )

(J)
lLl
WLn
0:::: .......
~
W
~o

0::::
W to
0 .......
0'
~

et:::f-;
1

0.0 9.0 18.0

TI t'1E (SEC)
27.0

27.09.0 18.0

TII-'IE (SEC)

\o
o,-,
f 1 _

o
~-T-----..----.-----,
Ul

.- f_

L ~L - - -.1----1-1---\---1
lL~
0:::::

-0
ll} I',-~--~---,------,

L.J
W
O::::Ln
(!) ....... -

L.J
o

.-.J
IL Ln

~---+--t--l

Zl
lL
Wo
f--! to -l-----I----+------l
(I) I

- 0.0

... ";11 .... ·· ..·....r . ....

II I
V

J \J
L J

r\/ -

·v

z

(f1 0 -.r-------y----,----,
I
I---t
c..9

I
(-<
(t (,J
W I --l----f----t----l
CJ 0.09.0 18.0 27.0

TI 11E (SEC)
r\l
If)

C) ro
ltJ "'T'
l!,
''-'" "f"
(-. "'T'

LL
'.-J 0

"'T'

o
-, (0
- I',

C) ,\I
,L.. I''''a:

LLl "'T'
_J 1

(L
~

I
1.1'1 IF -!-~~-"f___\_------; -4---1

0.0 9.0 18.0

TI lIE ":;EC.l
27.1.' 1.1. 1.' 1:::.1.1

TIllE I '=,E(: ,
27.0

Figure j(). Run 5, High Speed, Multiple Way Point Maneuver (New Control Law)

72



update time is to be expected since the AUV travels further at high speeds during the

update interval thus causing it to be further away from the last known position used by

the control law.

4. Conclusion

LOS Guidance works as well at 50 ft/sec as it did at 3 ft/sec for the runs

shown in Chapter 5. The only modifications that were required were to increase the

strength of the switching term in the speed control law and decrease the integration time

step and navigation update time. The fact that only the speed control law had to be

modified is consistent with the fact that the control· surfaces become more effective at

higher speeds resulting in more response to a given control signal. To increase the speed,

on the other hand, requires more motor rpm thus causing the speed control law to be

modified consistent with the larger propulsion system that would have to be installed to

achieve the higher operating SPeed.
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Vll. EFFECT OF CURRENT ON LOS GUIDANCE

A. INTRODUCTION

This chapter investigates the effect of current on the autopilot's ability to reach a

series of way points using LOS Guidance. The speed during these runs will be 4 ft/sec

which is consistent with the operating speed of the AUV under construction at NPS. The

:ftrst runs attempt to reach a single way point with the current coming from various

directions. The next simulations will show the effect of the strength of the current. The

last set of simulations show how the presence of a strong current can effect a path made

up of multiple way points.

B. EFFECT OF CURRENT DIRECTION

1. Run 1

To see just the effect of the direction of the current, a single way point at

(10,10,0) was chosen and a constant speed of 4 ft/sec was commanded for the AUV.

Figure 38 shows the path that resulted when no current was present. Notice that a new

graph of the distance the AUV is away from the next way point (DAWAY) has been

added. The target radius was set at .01 shiplengths to allow the vehicle to get as close as

possible to the prescribed way point. This represents the standard to which all other runs

can be compared.
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2. Run 2 and Run 3

These runs, shown in Figure 39, demonstrate the effect of a 2 ft/sec current.

This current is 50 % of the operating speed of the AUV which should be considered to

be an extreme case. Both runs are shown in Figure 39. For Run 2 the current was from

left to right and for Run 3 the current was right to left. Notice that the AUV still reaches

the way point in both cases but is swept away from the no current path. Notice too that

in both cases the AUV has a fmal approach which is against the current.

3. Run 4 and Run 5

For Run 4 the current direction was from top to bottom. For Run 5 it was

from bottom to top. In both cases the fmal approach once again is against the current, see

Figure 40. In addition the miss distance was the largest when the current comes from

bottom to top. It should be remembered however, that the target radius that will be used

during the actual operation is two shiplengths. Since the AUV was able to get within

approximately 1.5 shiplengths, this run should be considered a hit also.

4. Conclusion

The AUV will reach the prescribed way point under extremely adverse current

conditions. The problem however is that its path deviates from the near straight line path

of the no current case to the point that it may be unsuitable for operation in an

environment which requires a high degree of control over the path. The other problem to

address is that the AUV will approach the way point against the current which may be

undesirable considering the position of the next way point along its path.
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C. ADAPTATION OF STEERING CONTROL

For the runs shown in Figures 39 and 40 the value for the x and y position of the

AUV are calculated by the following equations where the subscript c denotes current.

x = U c + U cos'" - v sin",

(7.1)

y = V c + u sin'" + v sin",

Recall too that the desired heading is calculated using Equation 7.2.

"'d =ATAN[ (y-yd) / (x-xd) ] (7.2)

Recall that at steady state the desired heading and the actual heading are equal. Therefore,

at steady state, with a desired way point at (0,0) for simplicity, Equation (7.2) can be

substituted into Equation (7.1) which upon integration yields the result shown as Equation

(7.3).

(7.3)

Equation (7.3) shows that the desired heading at steady state ultimately is parallel to the

direction of the current. This result is verified by the simulation results shown in Figures

39 and 40. Notice that if the vertical component of the current is zero as is the case for

Figure 39 the desired heading becomes 0 or 180 degrees. Correspondingly, if the

horizontal component of the current is zero, the desired heading is + or - YO degrees as

shown in Figure 40.
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Once an understanding of the above relationships was attained, the next step was

to modify the control law to attain tighter control over path. This was done by specifying

a desired heading that compensates for the direction of the current rather than being

controlled by it. To do this, recall. that the equation for the sliding surface for SIS02 is

given by Equation (2.16) which is repeated here as follows:

(7.4)

By considering the simple case where the AUV is conunanded to travel along the x axis,

a modification to the sliding surface can be attained. For this simple path the desired

heading is zero. In addition the speed in the y direction must also be zero. This

observation coupled with Equation (7.1) gives the relationship shown in Equation (7.5)

that can be used to fmd the steady state error that must exist to compensate for the effect

of the current.

(7.5)

This result requires that the actual heading of the AUV be composed of two parts as

shown in Equation (7.6).

(7.6)

Recalling that the sway velocity v has been estimated to be zero and that r is zero at
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steady state, the sliding surface equation shown in Equation (7.4) becomes:

Notice that the sliding surface equation will not be zero at steady state unless another

tenn equal in magnitude but opposite in sign is added to the sliding surface equation. It

is by this reasoning that the equation for the sliding surface for SIS02 was modified to

become:

This additional tenn has the effect of introducing a steady state error for heading that

exactly offsets the effects of the current and improves the path keeping characteristics of

the AUV. It should be pointed out that this equation relies on perfect knowledge of the

current velocity allowing the component of the current's velocity that is petpendicular to

the AUV's straight line path between consecutive way points to be detennined.

The improvement which results is shown by rerunning the same simulations

discussed at the beginning of this chapter using the modified sliding surface for SIS02.

The improvement is easily seen in Figures 41,42,43,and 44 where the old results are on

the left and the new results are on the right. Based upon this comparison, it can be

concluded that LOS Guidance can be highly successful at controlling an AUV in a high

current environment if the velocity of the current is well known. This shifts the burden

of tight control over the path to the design of an accurate estimator for current velocity.
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Such an observer.will not be included in this worlc but the following simulation is

included to give an indication of the impact an inaccurate estimate of current would have.

The current was given a value of 2 ft/sec from bottom to top. The estimated value was

1 ft/sec from bottom to top. Figure 45 shows that the result is still improved from the

case where no compensation for current was included. From this it can be concluded that

even an imperfect estimate of the CUI'I'ents velocity will result in some improvement in

the AUV's path. The better the estimate the more improvement that results.

D. MULTIPLE WAY POINT PATHS

The ultimate test for the autopilot using LOS Guidance is to show that it can reach

a series of way points. The same path used t:hiough out this work is repeated here one last

time to demonstrate that the AUV will travel through a series of way points even in the

presence of a current that has a magnitude of 1.4 ft/sec in a direction 45 degrees away

from the origin. The result is shown in Figure 46 which can be compared to the same run

done without a current present in Figure 47. The results show that LOS Guidance based

on a heading control autopilot that has been modified to account for the presence of a

current is very capable of guiding the AUV· through the prescribed way points.
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vm. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The following are the major conclusions that can be drawn from this study.

• .The control laws for speed, heading, and depth were all developed independently,
and yet their individual control actions did not interfere with each other.

• The control laws, based on a simple linear model, were able to control the more
complex nonlinear model of the SDV MARK. 9 vehicle by virtue of the nonlinear
switching terms, associated with Sliding Mode Theory, that compensated for any
unmodeled behavior and enhanced robustness.

• In developing the steering control autopilot, sway velocity is best handled as a
disturbance rather than an observed quantity.

• LOS Guidance provides an effective means of interpreting the position coordinates
of the way points provided by the mission planner into commands for heading that
can be executed by the autopilot. An inherent characteristic of LOS Guidance is that
it enhances the robustness of the system as a whole. In addition, tighter control of
path can be attained by specifying the way points more frequently.

• The robustness of this combination of Sliding Mode Control and LOS Guidance is
demonstrated by the 3 ft/sec to 50 ft/sec speed envelope over which the autopilot
operated effectively even though the linearization that produced the simple linear
model upon which the control laws were based was done about a nominal operating
speed of 6 ft/sec.

• LOS Guidance can be easily modified to take advantage of known or observed
current velocity thus allowing the vehicle to operate in strong currents.

91



B. RECOMMENDATIONS

The following actions should be taken to fully utilize the research done for this

thesis.

• Verify simulation results using the actual AUV currently under construction at NPS.

• Contrast this autopilot using LOS Guidance to other techniques for controlling
AUVs, such as minimizing cross track error, to ensure the best method is ultimately
adopted.

• Design an observer that can determine the velocity of the current that the AUV is
operating in.
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APPENDIX A

//***********************************************************************
//* *
//* AUV AUTOPILOT EXEC PROGRAM *
V* *
//* THIS PROGRAM CALCULATES ALL VALUES NEED TO SIMULATE *
//* SPEED AND HEADING CONTROL FOR A LINEAR, FULL STATE *
//* FEEDBACK, MODEL OF THE AUV. *
//* *
//***********************************************************************

//THIS PROGRAM COMPUTES THE S COEFFICIENTS FOR 2 SISO SYSTEMS.
// heading is entered in degrees and converted to radians in the program

// ********************* SYMBOL IDENTIFICATION ***********************
// ubar- nominal operating speed upon which the linearization is based (ft/sec).
// nbar- motor RPM that results in ubar.
/ / L - length of SDV-9 (ft).
// mass .. mass of SDV-9 (slugs).
// Iz - moment of inertia of the SDV-9 (ft 1b sec2).
// den - fluid density ($lugs/ft3).
// Hd - desired heading (degrees).
// ud - desired surge speed (ft/sec).

//********************** ASSIGNMENT OF CONSTANT VALUES ******************

ubar=6;
nbar-500;
L=17.4;
mass=372;
Iz=10000;
den=62.4/32.2;
kvis=1.082D-5;

IIFLOW PARAMETERS
Yr ... 0297;
Yv--.0931;
Nrd--.0034;
Ydr-.0273;
Yvd--.0555;
Nr--.0164;
Nv--. 00742;
Ndr"-.0129;
Xud--.0076;
Nvd... 0012;
Yrd=.0012;
CDo".00385 + 1.296D-17*(ubar*1/kvis ~1.2D·-7)**2;

11** DEFINATION OF SYMBOLS REPRESENTING CONVIENENT GROUPING OF TERMS **

ALPHA=2*den*L**2*CDo/(2*mass-den*L**3*Xud);
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II ********************************************************************
II * *II * CALCULATION OF A AND B MATRICIES FOR SISOI WHERE X.. [U]' *
II * *II ********************************************************************

Al .. -ALPHA*ubar;
Bl - ALPHA*.OI2**2*nbar;

II ********************************************************************
II * DECOUPLING THE LATERAL AND YAW EQUATIONS OF MOTION *
II ********************************************************************
M..O.O*ones(2,2);
C~O.O*ones(2,3);

M(I,I)=mass-den*L**3*Yvd/2;
M(I,2)--den*L**4*Yrd/2;
M(2,1) ..-den*L**4*Nvd/2;
M(2,2)-Iz-den*L**5*Nrd/2;
IIC(I,1)=den*L**3*Yr*ubar/2;
C(1,1)-den*L**3*Yr*ubar/2 - mass*ubar;
C(I,2)-den*L**2*Yv*ubar/2;
C(1,3)-den*L**2*Ydr*ubar**2/2;
C(2,1)-den*L**4*Nr*ubar/2;
C(2,2)=den*L**3*Nv*ubar/2;
C(2,3) ..den*L**3*Ndr*ubar**2/2;

II **********************************************************************
II * *II * CALCULATION OF A AND B MATRICIES FOR SIS02 WHERE X.. [Heading,v,r]' *
II * *
II **********************************************************************

D=inv(M)*C;

A2.. [O,O,I;O,d(I,2),d(I,I);O,d(2,2),d(2,1»);
B2-(O;d(I,3);d(2,3));

II ******************* CALCULATION OF SI,S2,S3,S4 ***********************

inquire atasql
inquire atasq2

inquire poles2

kc2- poleplace(A2,B2,poles2);
AC2-A2-B2*kc2;

(evec2,eva12)-eig(AC2');

Sl .. l;
S2=evec2(1,1);
S3=evec2(2,1);
S4 ..evec2(3,1);
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ATASQ1-.6 ...

// ********************************************************************
// * DETERMINING GAIN VALUES FOR MATRIXx BLOCK DIAGRAM. *
// ********************************************************************
// CONVENIENT GROUPING OF TERMS:
DDl=COUD*.012**2*nbar;
DD2-S3*d(1,3)+S4*d(2,3)7
Natal--atasql/DDl 7
Nata2--atasq2/DD2 7
NNI-Sl*Al/DDl7
NN2-(S3.d(1,2) + S4*d(2,2»/DD2;
NN3-(S2+ S3*d(l,l) + S4*d(2,l»/DD27

d23-d(2,3);
d21-d(2,1);
d13=d(1,3)7
d22=d(2,2)7
d12 ..d(1,2);
dll-d(l,l);
// **********************************************************************
/ / * SIMULATION • *
// **********************************************************************
inquire tsim
tstep-.17
inquire ud
inquire HdDEG
Hd ... HdDEG*6.28/360;
T-!O:tstep:tsim]';
ud-ud*ones(T)7
Hd-Hd*ones(T);
U-! ud, Hd] 7
Y - SIM(T,U) 7
// *******************************************************************
// * GRAPHICAL DISPLAY OF RESULTS *
// *******************************************************************
HHD-!Y(:,2)*360/6.28 Hd*360/6.28)7
UUD-!Y(:,l) ud];

PLOT(T,Y(:,3),'UPPER LEFT XLABEL/T/ YLABEL/SIGMAl/TITLE/
BAND-1FPS/' )

PLOT(T,Y( :,S),'UPPER RIGHT XLABEL/T/ YLABEL/SIGMA2/TITLE/ATASQ2-.4 POLES •••
-!0,-.4,-.42] BAND-.lRAD./')

PROPULSION •••

PLOT(T,Y(:,6),'LOWER RIGHT XLABEL/T/ YLABEL/RUDDER/TITLE/
(MAX DEFLECTION-.4RAD)/')

PLOT(T,Y(:,4),'LOWER LEFT XLABEL/T/ YLABEL/RPM/TITLE/
(MAX. RPM- SOORPM)/')

PLOT(T,HHD, 'UPPER RIGHT XLABEL/T/ YLABEL/H & HD/TITLE/
(Hd .. 90 DEG) /' )

PLOT(T,UUD,'UPPER LEFT XLABEL/T/ YLABEL/ U & UD/TITLE/
(Ud ... 4.0 FPS)/')

//exec('RUNSUPERG1.X')
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APPENDIX B.

c ***************************************************************
c * *
C * NONLINEAR AUV MODEL / STERN PLANE AND BOW PLANE SEPARATED *
C * *
C * VARIABLE DECLARATION 11 INPUTS 280 *
C * CONSTANTS 80 PROPULSION MODEL 300 *
C * INITIAL CONDITIONS 136 OUTPUTS 452 *
C * MASS MATRIX 230 INTEGRATION 475 *
C * INVERT MATRIX, 268 CONTROL LAWS 500 *
C ***************************************************************

REAL AW(82,82)
REA~ MASS,LATYAW,NORPIT
REAL MM(6,6),G4(4),GK4(4),BR(4),HH(4)
REAL B(6,6),BB(6,6)
REAL A(12,12), AA(12,12),INDX(lOO)
REAL XPP ,XQQ ,XRR ,XPR
REAL XUDOT ,XWQ ,XVP ,XVR
REAL XQDS ,XQDB ,XRDR ,XVV
REAL XWW ,XVDR ,XWDS ,XWDB
REAL XDSDS,XDBDB ,XDRDR ,XQDSN
REAL XWDSN ,XDSDSN
REAL TIME,S,EITA,UBAR,UHAT,COMZ,BAR,SIM,DE,SAT,VHAT,ZZOBS
REAL SSI,SS2,UD,XD,YD,TD,TNWP,XA,YA,HD,HDMDEG,DAWAY,SATSGNl
REAL SATSGN2,ZZOBSDOT,NEARMISS,ALPHA,VCC,XD1,YD1,XD2,YD2,DY,DX
REAL NAVUPDATE,TNAV,TARGET,FF,GG,HHH,LLL,HDP,HDM,LDAWAY
INTEGER DV

C
C LATERAL HYDRODYNAMIC COEFFICIENTS
C

REAL YPDOT ,YRDOT,YPQ ,YQR
REAL YVDOT ,YP ,YR ,YVQ
REAL YWP ,YWR ,YV ,YVW
REAL YDR ,CDY

C
C NORMAL HYDRODYNAMIC COEFFICIENTS
C

REAL ZQDOT ,ZPP,ZPR ,ZRR
REAL ZWDOT ,ZQ ,ZVP ,ZVR
REAL ZW ,ZVV ,ZDS ,ZDB
REAL ZQN ,ZWN ,ZDSN ,CDZ

REAL ZHADOT,ZHAT
C
C ROLL HYDRODYNAMIC COEFFICIENTS
C

REAL KPDOT ,KRDOT ,KPQ
REAL KVDOT , KP ,KR
REAL KWP ,KWR ,KV
REAL KPN , KDB

,KQR
,KVQ
. ,KVW

C
C PITCH HYDRODYNAMIC COEFFICIENTS
C

REAL MQDOT ,MPP
REAL MWDOT , MQ
REAL MW , MVV
REAL MQN , MWN

,MPR,MRR
,MVP ,MVR
,MDS , MOB

,MDSN
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REAL QHADOT,QHAT,THADOT,THAT
C
C YAW HYDRODYNAMIC COEFFICIENTS
C

REAL NPDOT,NRDOT,NPQ ,NQR
REAL NVDOT , NP ,NR ,NVQ
REAL NWP , NWR ,NV ,NVW
REAL NDR

C
C MASS CHARACTERISTICS OF THE FLOODED VEHICLE
C

REAL WEIGHT, BOY ,VOL ,XG
REAL YG , ZG ,XB ,ZB
REAL IX , IY ,IZ ,IXZ
REAL IYZ , IXY' ,YB
REAL L , RHO,G ,NU
REAL AO ,KPROP ,NPROP, X1TEST
REAL DEGRUD ,DEGSTN
COMMON /BLOCK1/ F(12), FP(6), XMMINV(6,6), UCF(4)
INTEGER N,IA,IDGT,IER,LAST,J,K,M,JJ,KK,I
REAL WKAREA(s4), X(12)

C
C RUDDER COEFFICIENTS
C

PARAMETER ( DSMAXc -0.175)
C
C LONGITUDINAL HYDROOYNAMIC COEFFICIENTS
C

-1.sE-2 ,XRR ... 4.E-3 ,XPR -7.sE-4,
,XVP - -3.E-3 ,XVR - 2.E-2,
,XRDR= -1.E-3 ,xvv -s.3E-2,
,XWDS=4.6E-2 ,XWDB- loE-2,
,XDRDR= -1.E-2 ,XQDSN... 2.E~3,

)

7.E-3 ,XQQ
,XWQ - -2.E-l
,XQDB--2.6E-3
,XVDR-l.7E-3
,XDBDB- -B.E-3
, XDSDSN,.. -1.6E-3

PARAMETER(XPP 
& XUDOT--7.6E-3
& XQDS... 2.sE-2
& XWW -1.7E-1
& XDSDS- -1.E-2
& XWDSN... 3.sE-3

C
C LATERAL HYDRODYNAMIC COEFFICIENTS
C

PARAMETER(YPDOT-1.2E-4 ,YRDOTc 1.2E-3 ,YPQ - 4.E-3 ,YQR --6.sE-3,
& YVDOT--s.sE-2 ,YP - 3.E-3 ,YR - 3.E-2 ,YVQ -2.4E-2,
& YWP -2.3E-l ,YWR =-1.9E-2 ,YV ... -1.E-1 ,YVW -6.BE-2,
& YDR -2.7E-2 ,COY =3.sE-1)

C
C BORMAL HYDRODYNAMIC COEFFICIENTS
C

PARAMETER(ZQDOT--6.8E-3 ,ZPP -1.3E-4 ,ZPR =6.7E-3 ,ZRR -~i.4E-3,
& ZWDOT=-2.4E-1 ,ZQ =-1.4E-l ,ZVP =-4.8E-2 ,ZVR ... 4.sE~2,
& ZW - -3.E-l ,ZVV c-6.8E-2 ,ZDS =-7.3E-2 ,ZDB --2.6E-2,
& ZQN --2.9E-3 ,ZWN =-s.lE-3 ,ZDSN- -l.E-2 ,CDZ - 1.0)

C
C ROLL HYDRODYNAMIC COEFFICIENTS
C

PARAMETER(KPDOT- -1.E-3 ,KROOT--3.4E-s ,KPQ --6.9E-s ,KQR -1.7E-2,
& KVDOT-l.3E-4 , KP --l.lE-2 ,KR --8.4E-4 ,KVQ--s.1E-3,
& KWP --1.3E-4, KWR -lo4E-2 ,KV -3.lE-3 ,KVW --lo9E-l,
& KPN --5.7E~4 , KDB ... 0.0 )

C
C PITCH HYDRODYNAMIC COEFFICIENTS
C

PARAMETER(MQDOT--1.7E-2 ,MPP =s.3E-s ,MPR c s.E-3 ,MRR --2.9E-3,
& MWDOT=-6.8E-3 , MQ =-6.8E-2 ,MVP =l.2E-3 ,MVR =1.7E-2,
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& MW .. 1. E-l
& MQN --1.6E-3

, MVV =-2.6E-2
, MWN =-2.9E-3

,MDS =-4.1E-2 ,MDB -6.9E-3,
,MDSN =-5.2E-3)

C
C YAW HYDRODYNAMIC COEFFICIENTS
C

PARAMETER(NPDOT--3.4E-5 ,NRDOT=-3.4E-3,NPQ =-2.1E-2 ,NQR ..2.7E-3,
& NVDOT-l.2E-3 , NP =~8.4E-4 ,NR =-1.6E-2 ,NVQ - -1.E-2,
& NWP --1.7E-2 , NWR =7.4E-3 ,NV =-7.4E-3 ,NVW --2.7E-2,
& NDR --1.3ll:-2)

C
C MASS CHARACTERISTICS OF THE FLOODED VEHICLE
C

,NU - 8.47E-4 ,
X1TEST- 0.1 ,

=200. ,XG .. O.
,ZB - 0.0,
,IXZ - -10. ,

=12000. ,VOL
,XB .. O.
,IZ .. 10000.
,YB.. 0.0,
,G = 32.2
, NPROP = O. ,

PARAMETER ( WEIGHT =12000., BOY
& YG - 0.0 , ZG = 0.20
& IX - 1500. , IY - 10000.
& IYZ - -10. , IXY = -10.
& L - 17. 4 , , RHO = 1. 94
& AO - 2.0 ,KPROP = O.
& DEGRUD- 0.0 ,DEGSTN- 0.0)

C
C INPUT INITIAL CONDITIONS HERE IF REQUIRED
C

OPEN(20,FILE-'DAWAY.DAT' ,STATUS='NEW')
OPEN(18,FILE-'MODEL.OAT' ,STATUS='NEW')
NUMPTS-O.O
OVal. 0

C
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YPOSO=O.O
ZPOSO..O.O
DB.., 0.0
OS .. 0.0
OR .. 0.0
LATYAW - 0.0
NORPIT ... 0.0
RE .. UO*L/NU

TNAV-O
XA..XPOSO
YA""YPOSO

LDAWAY ... 2.0
NEARMISS .. 0.0

C
U .. UO
V -vO
W '" WO
P .. pO
Q - QO
R .. RO
XPOS .. XPOSO
YPOS ... YPOSO
ZPOS .. ZPOSO
PSI .. PHIO
THETA "" THETAO
PHI .. PHIO

QHADOT=O.O
THADOT-O.O
ZHADOT-O.O
QHAT-O.O
THAT-O.O
ZHAT=O.O
VHAT"'O.O
ZOBSDOT-O.O
ZZOBS .. 0.0

C
C DEFINE LENGTH FRACTIONS FOR GAUSS QUADRATURE TERMS
C

G4(1) .. 0.069431844
G4(2) .. 0.330009478
G4(3) .. 0.669990521
G4(4) - 0.930568155

C
C DEFINE WEIGHT FRACTIONS FOR GAUSS QUADRATURE TERMS
C

GK4(1) .. 0.1739274225687
GK4(2) 0.3260725774312
GK4(3) .. 0.3260725774312
GK4(4) - 0.1739274225687

C
C DEFINE THE BREADTH BB AND HEIGHT HH TERMS FOR THE INTEGRATION
C

C

BR(l) 75.7/12
BR(2) - 75.7/12
BR(3) - 75.7/12
BR(4) - 55.08/12

HH(l) ... 16.38/12
HH(2) .. 31.85/12
HH(3) - 31.85/12
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HH(4) - 23.76/12
C

MASS .. WEIGHT/G
C

N = 6
DO 15 J .. 1,N

DO 10 K .. 1,N
XMMINV(J,K) - 0.0
MM(J,K) .. 0.0
CONTINUE

CONTINUE

MM(l,l) .. MASS -«RHO/2)*(L**3)*XUDOT)
MM(l,S) .. MASS*ZG
MM(1,6) - -MASS*YG

MM(2,2) - MASS ~«RHO/2)*(L**3)*YVDOT)

MM(2,4) - -MASS*ZG -«RHO/2)*(L**4)*YPDOT)
MM(2,6) - MASS*XG - «RHO/2)*(L**4)*YRDOT)

MM(3,3) .. MASS - «RHO/2)*(L**3)*ZWDOT)
MM(3,4) - MASS*YG
MM(3,5) .. -MASS*XG -«RHO/2)*(L**4)*ZQDOT)

MM(4,2) - -MASS*ZG - «RHO/2)*(L**4)*KVDOT)
MM(4,3) - MASS*YG
MM(4,4) - IX - «RHO/2)*(L**5)*KPDOT)
MM(4,5) - -IXY
MM(4,6) - -IXZ -«RHO/2)*(L**5)*KRDOT)

10
15
C

C

C

C

C

MM(5,1)
MM(5,3)
MM(5,4)
MM(5,S)
MM(5,6)

.. MASS*ZG
- -MASS*XG -«RHO/2)*(L**4)*MWDOT)
.. -IXY
- IY -«RHO/2)*(L**5)*MQDOT)

-IYZ

•

MM(6,1) .. -MASS*YG
MM(6,2) .. MASS*XG -«RHO/2)*(L**4)*NVDOT)
MM(6,4) .. -IXZ - «RHO/2)*(L**5)*NPDOT)
MM(6,5) - -IYZ
MM(6,6) .. IZ - «RHO/2)*(L**5)*NRDOT)
LAST-N*N+3*N
DO 20 M.. 1,LAST
WKAREA(M) .. 0.0

20 .CONTINUE
C

IER - 0
IA - 6
IDGT - 4

C *****ROUTINE FOR INVERTING THE MM MATRIX*****
DO 12 I-l,N

DO 11 J-l,N
XMMINV(I,J)-O.O

11 CONTINUE
XMMINV(I,I)-l

12 CONTINUE
CALL INVTA(MM,N,INDX,D)

DO 13 J-I, N
CALL INVTB(MM,N,INDX,XMMINV(l,J»

13 CONTINUE

100



*************INPUTS************

RUDDER AND DIVE PLANE COMMANDS

WRITE(*,*) 'INPUT SIMULATION TIME AND TIME STEP'
READ (*,*) SIM,DELT
TIME"O.O
DS" 0.0
DR= 0.0
DB= 0.0
EITA-4.0
BAR.... 4

C SIZE OF OUTPUT DATA ARRAY FOR PLOTTING
NUMOUT-6

711 FORMAT (214)
C
C *******************SIMULATION BEGINS ****************

DO 100 I-1,SIM

C
C
C
C
C

C
t PROPULSION MODEL
C

SIGNU - 1.0
IF (U.LT.O.O) SIGNU - -1.0
IF (ABS(U).LT.X1TEST) U .. XITEST
SIGNN ... 1.0
IF (RPM.LT.O.O) SIGNN .. -1.0
ETA - 0.012*RPM/U
RE - U*L/NU
CDO.. .00385 + (1.296E-17)*(RE - 1.2E7)**2
CT .. ABS(O.008*L**2*ETA*ABS(ETA)/(AO»
CTl -ABS( 0.008*L**2/(AO»
EPS __1.0+SIGNN/SIGNU*(SQRT(CT+l.0)-1.0)/(SQRT(CT1+1.0)-1.0)
XPROP - CDO*(ETA*ABS(ETA) - 1.0)

LONGITUDINAL FORCE

FP(l) _ MASS*V*R - MASS*W*Q + MASS*XG*Q**2 + MASS*XG*R**2-
& MASS*YG*P*Q - MASS*ZG*P*R + (RHO/2)*L**4*(XPP*P**2 +

C
C
C
C
C
C

500
C
C
C
C
C

&

CALCULATE THE DRAG FORCE, INTEGRATE THE DRAG OVER THE VEHICLE
INTEGRATE USING A 4 TERM GAUSS QUADUTURE

LATYAW ... 0.0
NORPIT .. 0.0
DO 500 K ... 1,4

UCF(K) - SQRT«V+G4(K)*R*L)**2 + (W-G4(K)*Q*L)**2)
IF(UCF(K).GT.1E-10) THEN
TERMO - (RHO/2)*(CDY*HH(K)*(V+G4(K)*R*L)**2 +

CDZ*BR(K)*(W-G4(K)*Q*L)**2)
TERM1 - T&RMO*(V+G4(K)*R*L)/UCF(K)
TERM2 - TERMO*(W-G4(K)*Q*L)/UCF(K)
LATYAW .. LATYAW + TERM1*GK4(K)*L
NORPIT -NORPIT + TERM2*GK4(K)*L
END IF

CONTINUE

FORCE EQUATIONS

•
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& XQQ*Q**2 + XRR*R**2 + XPR*P*R) +(RHO/2)*L**3*(XWQ*W*Q +
& XVP*V*P+XVR*V*R+U*Q*(XQOS*OS+XQOB*OB)+XROR*U*R*OR)+
& (RHO/2)*L**2*(XVV*V**2 + XWW*W**2 + XVOR*U*V*OR + U*W*
& (XWOS*OS+XWOB*OB)+U**2*(XOSOS*OS**2+XOBOB*OB**2+
& XOROR*OR**2) )-(WEIGHT -BOY)*SIN(THETA) +(RHO/2)*L**3*
& XQOSN*U*Q*OS*EPS+(RHO/2)*L**2*(XWOSN*U*W*OS+XOSOSN*U**2*
& OS**2)*EPS +(RHO/2)*L**2*U**2*XPROP

C
C LATERAL FORCE
C

- -MASS*U*R - MASS*XG*P*Q + MASS*YG*R**2 - MASS*ZG*Q*R +
(RHO/2)*L**4*(YPQ*P*Q + YQR*Q*R)+(RHO/2)*L**3*(YP*U*P +
YR*U*R + YVQ*V*Q + YWP*W*p + YWR*W*R) + (RHO/2)*L**2*
(YV*U*V + YVW*V*W +YOR*U**2*OR) -LATYAW +(WEIGHT-BOY)*
COS(THETA)*SIN(PHI)+MASS*W*P+MASS*YG*P**2

C
C NORMAL FORCE
C

PITCH FORCE

ROLL FORCE
C
C
C

C
C
C

FP(3)
&
&
&
&
&
&

FP(4)
&
&
&
&
&
&

FP(S)
&
&
&
&
&
&-
&

- MASS*U*Q - MASS*V*P - MASS*XG*P*R - MASS*YG*Q*R +
MASS*ZG*P**2 + MASS*ZG*Q**2 + (RHO/2)*L**4*(ZPP*P**2 +
ZPR*P*R + ZRR*R**2) + (RHO/2)*L**3*(ZQ*U*O + ZVP*V*p +
ZVR*V*R) +(RHO/2)*L**2*(ZW*U*W + ZVV*V**2 + U*~2*(ZOS*

OS+ZOB*OB»-NORPIT+(WEIGHT-BOY)*COS(THETA)*COS(PHI)+
(RHO/2)*L**3*ZQN*U*Q*EPS +(RHO/2)*L**2*(ZWN*U*W +ZOSN*
U**2*OS)*EPS

- -IZ*Q*R +IY*Q*R -IXY*P*R +IYZ*Q**2 -IYZ*R**2 +IXZ*P*Q +
MASS*YG*U*Q -MASS*YG*V*P -MASS*ZG*W*P+(RHO/2)*L**S*(KPQ*
P*Q + KQR*Q*R) +(RHO/2)*L**4*(KP*U*P +KR*U*R + KVQ*V*Q +
KWP*W*P + KWR*W*R) +(RHO/2)*L**3*(KV*U*V + KVW*V*W) +
(YG*WEIGHT - YB*BOY)*COS(THETA)*COS(PHI) - (ZG*WEIGHT 
ZB*BOY)*COS(THETA)*SIN(PHI) + (RHO/2)*L**4*KPN*U*P*EPS+
(RHO/2)*L**3*U**2*KPROP +MASS*ZG*U*R

- -IX*P*R +IZ*P*R +IXY*Q*R -IYZ*P*Q -IXZ*p**2 +IXZ*R**2 
MASS*XG*U*Q + MASS*XG*V*P + MASS*ZG*V*R - MASS*ZG*W*Q +
(RHO/2)*L**S*(MPP*P**2 +MPR*P*R +MRR*R**2)+(RHO/2)*L**4*
(MQ*U*Q + MVP*V*P + MVR*V*R) + (RHO/2)*L**3*(MW*U*W +
MVV*V**2+U**2*(MOS*OS+MOB*OB»+ NORPIT -(XG*WEIGHT
XB*BOY)*COS(THETA)*COS(PHI)+(RHO/2)*L**4*MQN*U*Q*EPS +
(RHO/2)*L**3*(MWN*U*W+MOSN*U**2*OS)*EPS- .
(ZG*WEIGHT-ZB*BOY)*SIN(THETA)

C
C YAW FORCE
C

FP(6)
&
&

.&
&
&
&

- -IY*P*Q +IX*P*Q +IXY*P**2 -IXY*Q**2 +IYZ*P*R -IXZ*Q*R 
MASS*XG*U*R + MASS*XG*W*P - MASS*YG*V*R + MASS*YG*W*O +
(RHO/2)*L**S*(NPQ*P*Q + NQR*Q*R) +(RHO/2)*L**4*(NP*U*P+
NR*U*R + NVQ*V*Q +NWP.*W*P + NWR*W*R) +(RHO/2)*L**3*(NV*
U*V + NVW*V*W + NDR*U**2*OR) - LATYAW + (XG*WEIGHT 
XB*BOY)*COS(THETA)*SIN(PHI)+(YG*WEIGHT)*SIN(THETA)
+(RHO/2)*L**3*U**2*NPROP-YB*BOY*SIN(THETA)

C
C
C NOW COMPUTE THE F{l-G) FUNCTIONS
C
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F(7) .. UCO + U*COS(PSI)*COS1THETA) + V*(COS(PSI)*SIN(THETA)*
& SIN(PHI).- SIN(PSI)*COS(PHI» + W*(COS(PSI)*SIN(THETA)*
& COS(PHI) + SIN(PSI)*SIN(PHI»

F(8) .. VCO + U*SIN(PSI)*COS(THETA) + V*(SIN(PSI)*SIN(THETA)*
& SIN(PHI) + COS(PSI)*COS(PHI» + W*(SIN(PSI)*SIN(THETA)*
& COS(PHI) - COS(PSI)*SIN(PHI»

F(9) .. WCO - U*SIN(THETA) +V*COS(THETA)*SIN(PHI) +W*COS(THETA)*
& COS(PHI)

C

C

DO 600 J .. 1,6
F(J) .. 0.0

DO 600 K .. 1,6
F(J) .. XMMINV(J,K)*FP(K) + F(J)

600 CONTINUE
C
C THE LAST SIX EQUATIONS COME FROM THE KINEMATIC RELATIONS
C
C FIRST SET THE DRIFT CURRENT VALUES
C
C UCO .. 0.0
C VCO .. 0.0
C WCO .. 0.0
C
C INERTIAL POSITION RATES F(7-9)
C

F(10) .. P + Q*SIN(PHI)*TAN(THETA) + R*COS(PHI)*TAN(THETA)

F(ll) .. Q*COS(PHI) - R*SIN(PHI)

F(12) .. Q*SIN(PHI)/COS(THETA) + R*COS(PHI)/C05(THETA)

UDOT" F(l)
VDOT .. F(2)
WDOT .. F(3)
PDOT .. F(4)
QDOT .. F(5)
RDOT .. F(6)
XDOT .. F(7)
YDOT .. F(8)
ZOOT ... F(9)
PHIDOT .. F(10)
THETAD .. F( 11)
'pSI DOT .. F ( 12 )

C

C

C

C
C EULER ANGLE RATES F(10-12)
C

C
C ******* CREATE OUTPUT DATA FILE ************************
C

IF (I .EQ. OV ) THEN
TIMER-FLOAT(I)/2.
WRITE (20,*) I
WRITE (20,744) DAWAY
WRITE (18,*) I
WRITE (18,743) 05/.01745 ,DR/.01745
WRITE (18,744) XPOS/L,YP05/L,ZPOS/L,XD,YD,COMZ,DAWAY
WRITE (18,745) U,UD,RPM

743 FORMAT (2Ell.3)
744 FORMAT (6E12.4)

103



745 FORMAT (6E12.4)
NUMPTS",NUMPTS + 1
DV",DV+1.0/DELT
ENDlF

c
C FIRST ORDER INTEGRATION
C

Y .. SWAY

x '" SURGE

R '" YAW RATE

THETA = PITCH

ROLL

SURGE RATE

ROLL RATE

HEAVE

SWAY RATE

Z

P

V

W = HEAVE RATE

U

PHI

Q = PITCH RATE

v '" V + DELT*VDOT

R '" R + DELT*RDQT

XPOS '" XPOS + DELT*XDOT

PSI '" PSI + DELT*PSIDOT

P '" P + DELT*PDOT

W '" W + DELT*WDOT

Q '" Q + DELT*QDOT

PHI '" PHI + DELT*PHIDOT

U '" U + DELT*UDOT

YPOS - YPOS + DELT*YDOT

THETA '" THETA + DELT*THETAD

ZPOS = ZPOS + DELT*ZDOT

C

C

C

C

C

C

C

C

C

C

C

C PSI '" YAW
C ****************************************************************
C * *
C '- * CONTROL LAWS *
C * *
C ********************~*******************************************

C
C *************** SLIDING MODE DEPTH CONTROL *******************

CALL OBSER(QHADOT,THADOT,ZHADOT,QHAT,THAT,ZHAT,DELT,ZPOS,DS,UO)
C

S-QHAT + 0.52*THAT - 0.0112*(ZHAT-COMZ*L)
IF(ABS(S) .LT. BAR) SAT=(S/BAR)
IF(S .LE. -BAR) SAT=-1.0
IF(S .GE. BAR) SAT=1.0
UHAT--S.1429*QHAT + 1.0714*THAT
UBAR=EITA*SAT
DE=UHAT+UBAR
IF (DE .GE. 0.4) DS=0.4
IF (DE .LE. -0.4) DS=-0.4
IF( (DE .LT. 0.4) .AND. (DE .GT. -0.4» DS=DE
DB=-DS*1.0

C
C
C
C
c

***************** SLIDING MODE STEERING CONTROL ***************

************************* PLANNER ***************************

DAWAY=«XPOS/L-XD)**2+(YPOS/L-YD)**2)**,5
IF ( DAWAY .LE. TARGET ) THEN
WRITE(*,*) 'CURRENT POSITION IS ',XPOS/L,YPOS/L,ZPOS/L
WRITE(*,*) 'SIMULATION TIME IS ',I

•
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WRITE(*,*) 'WHAT IS THE NEXT WAY POINT (XD,YD,ZD)?'
READ (*,*) XD,YD,COMZ
XD1~XD2

YD1~YD2

XD2~XD

YD2=YD
DY~ (YD2-YD1)
DX~ (XD2-XD1)
ALPHA=ATAN2(DY,DX)
WRITE (*,*) 'WHAT IS THE DESIRED SPEED?'
READ (*,*) UD
ENDIF

IF(ABS(XD-XA).LE.O.00000001)THEN
IF«YD-YA).GT.O.O) HD = 2.*ATAN(1.)
IF«YD-YA).LT.O.O) HD = - 2.*ATAN(1.)

ELSEIF «XD-XA).LT.O.O .AND. (YD-YA) .GT. 0.0) THEN
HD - ATAN«YD-YA)/(XD-XA» + 4.*ATAN(1.)

ELSEIF «XD-XA).LT.O.O .AND. (YD-YA) .LT. 0.0) THEN
HD = ATAN«YD-YA)/(XD-XA» - 4.*ATAN(1.)

IF «TIME-TNAV) .GE. NAVUPDATE ) THEN
XA=XPOS/L
YA-YPOS/L
TNAV-TNAV+NAVUPDATE
ENDIF

C ************************** HEADING ***********************
C

C
C ************************* NAVIGATOR **********************
C

ELSE
HD = ATAN«YD-YA)/(XD-XA»

ENDIF
HDMDEG = HDM*360./(8.*ATAN(1.»

C
C ********************** SWAY VELOCITY OBSERVER *****************
C

VHAT - 0.0
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

THE VALUE OF THE COEFFICIENTS VARY WITH SPEED TO ACCOUNT FOR DIFFERENC~S
BETWEEN THIS NONLINEAR MODEL AND THE LINEARIZED MODEL THE OBSERVER IS
BASED ON.(THIS CODE WAS NOT USED, INSTEAD VHAT WAS SET EQUAL TO ZERO.)

FF - -2.0
LLL- _2.275*(U**6)+48.102*(U**5)-406.839*(U**4)+

"& 1763.181*(U**3)-4165.344*(U**2)+5265.448*U-3211.956
GG - 1.1329*U - 70.535
HHH - .07584*(U**2) -3.0509*U + .0003

ZZOBSDOT - HHH*DR + GG*R + FF*VHAT
ZZOBS - ZZOBS + ZZOBSDOT*DELT

VHAT - ZZOBS + LLL*R

**************** CONDITIONS TO ALLOW SHORTEST TURN ************

HOP = HD + 8.*ATAN(1.)
IF (ABS(HDP-PSI) .LT. ABS(UD-PSI» THEN

HOM - 8*ATAN(1.) + HD
ELSE

HDM-HD
ENDIF
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C

C ***************** BEGIN HEADING SMC CALCULATIONS **************
C

VCC-VCE*COS(ALPHA) -UCE*SIN(ALPHA)
SS2-.4767*(PSI-HDM) + .0121*VHAT + .B790*R + .4767*ASIN(VCC/U)

IF(ABS( SS2) . LT.. 1) SATSGN2 .. ( SS2/ .10)
IF(SS2 .LE. -.1)SATSGN2--1.0
IF(SS2.GE .• 1) SATSGN2=1.0

DR- 3.1007*SATSGN2 + .1373*VHAT + .508l*R
IF (DR .GE. 0.4) DR - 0.4
IF (DR .LE. - 0.4) DR .. -0.4

C
C

C

C

******************* RPM INPUT CALCULATION *****************
SSl-U-UD
IF(ABS(SSl) .LT. 1.0) SATSGNl=(SSl/l)
IF(SSI .LE. -1.0) SATSGNl--l.O
IF(SSI .GE. 1.0) SATSGN1 ..1.0
RPM--4000.0*SATSGNl + 83.33*U

IF (RPM .GE. 5000.0) RPM= 5000.0
IF (RPM .LE. -5000.0) RPM=-5000.0

TIME-TIME+DELT

C

PAIANG - PHI/0.0174532925
THEANG .. THETA/0.0174532925
PSIANG .. PSI/0.0174532925

TRAC.. -YPOS
ROLL-PH lANG
YAW.. PSIANG
DEPTH--ZPOS
PITCH-THEANG
BOWANG.. ( DB/ .01745 )
STNANG-(DS/.01745)

100 CONTINUE
WRITE(*,*) 'NPTS - ' , NUMPTS
WRITE(*,*) 'TIMEINTERVAL .. ',DELT
WRITE(*,*) 'NAVIGATOR UPDATE TIME - ' ,NAVUPDATE
WRITE(*,*) 'TARGET RADIUS .. ',TARGET
WRITE(*,*} 'NONDIM SPEED - ' ,(UCO**2 +VCO**2)**.5/4
WRITE(*,*) 'NEARMISS = ' ,NEARMISS
STOP
END

C
C ******************** DEPTH CONTROL OBSERVER ***************~*****

C
SUBROUTINE OBSER(QHADOT,THADOT,ZHADOT,QHAT,THAT,ZHAT,DELT,ZPOS,

* DS,U)
C

QHADOT--O.7*QHAT-0.03*THAT-0.035*DS~20.9293*(ZPOS-ZHAT)

THADOT-QHAT-14.4092*(ZPOS-ZHAT)
ZHADOT--6*THAT+16.45*(ZPOS-ZHAT)

C
QHAT- QHAT+DELT*QHADOT
THAT- THAT+DELT*THADOT
ZHAT- ZHAT+DELT*ZHADOT
RETURN
END

106



APPENDIX C.

REAL*4 T(600),DS(60n),DR(600),OHS(600)
REAL*4 XPOS(600),YPOS(600),ZPOS(600)
REAL*4 ROLL(600),PITCH(600),YAW(600)
REAL*4 RPM{600),U{600)
REAL*4 UG(600),HG{600),UD(600),XD(600),YD(600),COMZ(600)
REAL*4 DEPTH(600),DEPTHD(600),DAWAY(600)
CHARACTER*l ANS
WRITE(*,*) 'INPUT NPTS & THE TIME INCREMENT (DELT).
READ(*,*) NPTS,DELT
DO I ... l,NPTS
OPEN(18,FILE-'MODEL.DAT' ,STATUS='OLD')
READ(18,*) INC
T(I) - DELT*INC
READ(18,*) DS(I),DR(I)
READ(18,*) XPOS(I),YPOS(I),ZPOS(I),XD(I),YD(I),COMZ(I),DAWAY(I)
READ(18,*) U(I),UD(I),RPM(I)
OHS(I)=O.O
DEPTH(I)= -ZPOS(I)
DEPTHD(I) ... -COMZ(I)
ENDDO

c
C ******************************************************************
C * THIS PROGRAM PLOTS TilE OUTPUT GRAPHS FOR THE SIMULATION OF THE *
C * NONLINEAR MODEL OF THE SDV-9 SIMULATION RUNS. *
C ******************************************************************
C

C

CALL MXMN(T,NPTS,TMX,TMN)
CALL MXMN(DS,NPTS,DSMX,DSMN)
CALL MXMN{DR,NPTS,DRMX,DRMN)
CALL MXMN(XPOS,NPTS,XPOSMX,XPOSMN)
CALL MXMN(YPOS,NPTS,YPOSMX,YPOSMN)
CALL MXMN(DEPTH,NPTS,DEPTHMX,DEPTHMN)
CALL MXMN(DEPTHD,NPTS,DEPTHDMX,DEPTHDMN)
CALL MXMN(U,NPTS,UMX,UMN)
CALL MXMN(UD,NPTS,UDMX,UDMN)
CALL MXMN(RPM,NPTS,RPMMX,RPMMN)
CALL MXMN(XD,NPTS,XDMX,XDMN)
CALL MXMN(YD,NPTS,YDMX,YDMN) ,
CALL MXMN(DAWAY,NPTS,DAWAYMX,DAWAYMN)

CALL SCALE(TMN,TMX,4.1,TORIG,TSTP,TMAX)
C

IF(DSMX-DSMN .EQ. 0.0) THEN
DSORIG...-.l
DSSTP=.l
DSMAX=.l
ELSE
CALL SCALE(DSMN,DSMX,4.1,DSORIG,DSSTP,DSMAX)
ENDIF

C
IF(DRMX-DRMN .EQ. 0.0) THEN
DRORIG..-.l
DRSTP=.l
DRMAX=.l
ELSE
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C

C

C

C

C

C

C

CALL SCALE(DRMN,DRMX,4.1,DRORIG,DRSTP,DRMAX)
ENDIF

IF(XPOSMX-XPOSMN .EQ. 0.0) THEN
XPOSORIG--.l
XPOSSTP-.l
XPOSMAX-.l
ELSE
CALL SCALE(XPOSMN,XPOSMX,4.1,XPOSORIG,XPOSSTP,XPOSMAX)
ENDIF

XXMX-AMAXl(XPOSMX,XDMX)
XXMN-AMINl(XPOSMN,XDMN)
IF(XXMX-XXMN .EQ. 0.0) THEN
XXORIG- .... l
XXSTP".l
XXMAX-.l
ELSE
CALL SCALE(XXMN,XXMX,6.1,XXORIG,XXSTP,XXMAX)
ENDIF

YYMX-AMAXl(YPOSMX,YDMX)
YYMN=AMINl(YPOSMN,YDMN)
IF(YYMX-YYMN .EQ. 0.0) THEN
YYORIG"-.l
YYSTP".l
YYMAX".l
ELSE
CALL SCALE(YYMN,YYMX,6.1,YYORIG,YYSTP,YYMAX)
ENDIF

DDMX=AMAXI (DEPTHMX, DEPTHDMX)
DDMN=AMINl(DEPTHMN,DEPTHDMN)
IF(DDMX-DDMN .EQ. 0.0) THEN
DDORIG=-.l
DDSTP.... 1
DDMAX".l
ELSE
CALL SCALE(DDMN,DDMX,6.1,DDORIG,DDSTP,DDMAX)
ENDIF

IF(DAWAYMX-DAWAYMN .EQ. 0.0) THEN
DAWAYORIG"-.l
DAWAYSTP.... 1
DAWAYMAX=.l
ELSE
CALL SCALE(DAWAYMN,DAWAYMX,6.1,DAWAYORIG,DAWAYSTP,DAWAYMAX)
ENDIF

HGMX=AMAXl(PSIMX,HDMX)
HGMN-AMINl(PSIMN,HDMN)
IF(HGMX-HGMN .EQ. O.Q) THEN
UGORIG--.l
HGSTP-.l
HGMAX-.l
ELSE
CALL SCALE(HGMN,HGMX,6.1,HGORIG,HGSTP,HGMAX)
ENDIF

UGMX=AMAXl(UMX,UDMX)
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UGMN=AMIN1(UMN,UDMN)
IF(UGMX-UGMN .EQ. 0.0) THEN
UGORIG=-.1
UGSTP=.l
UGMAX=.1
ELSE
CALL SCALE(UGMN,UGMX,6.1,UGORIG,UGSTP,UGMAX)
ENDIF

C
IF(RPMMX-RPMMN .EQ. 0.0) THEN
RPMORIG=-.1
RPMSTP... 1
RPMMAX=.1
ELSE
CALL SCALE(RPMMN,RPMMX,4.1,RPMORIG,RPMSTP,RPMMAX)
ENDIF

WANT TO VIEW THE PLOT OR OBTAIN A HARDCOPY?'WRITE(*,*) 'DO YOU
WRITE(*,*) , ,
WRITE(*,*) 'INPUT 1 FOR VIEW OR 2 FOR HARDCOPY'
READ(*,*) IPLOT VAL
IF(IPLOT VAL .EO. 1) CALL PGPX
IF(IPLOT=VAL .EQ. 2) CALL LN03I

C
C*********************** PLOT OR VIEW OPTION **************************
C
4

C
C ************* HORIZONTAL POSITION *********************
C

CALL PAGE(8.5,11.0)
CALL NOBRDR
CALL PHYSOR(1.75,7.75)
CALL AREA2D(2.0,2.0)
CALL XTICI<S(1)
CALL YTICKS(l)
CALL XNAME('X (SHIP LENGTHS)$',100)
CALL YNAME('Y (SHIP LENGTHS)$',lOO)
CALL GRAF(XXORIG,XXSTP,XXMAX,YYORIG,YYSTP,YYMAX)
IMARK=O
CALL RESET('DOT')
CALL RESET('THI<CRV')
CALL GRID(1,1)
CALL THKCRV(4)
CALL CURVE(XPOS,YPOS,NPTS,IMARK)
CALL MARKER(13)
CALL SCLPIC(2)
IMARK... -1
CALL CURVE(XD,YD,NPTS,IMAR~)

CALL ENDGR(O)
C
C *************** STERN PLANE INPUTS ********************
C
C CALL PHYSOR(4.95,5.05)
C CALL AREA2D(2.0,2.0)
C· CALL XTICKS(1)
C CALL YTICKS(l)
C CALL XNAME('TIME (SEC)$' ,100)
C CALL YNAME('STERN PL. (DEGREES)$' ,100)
C CALL GRAF(TORIG,TSTP,TMAX,DSORIG,DSSTP,DSMAX)
C IMARI<-O
C CALL RESET('DOT')
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C CALL RESET('THKCRV')
C CALL GRID(1,1)
C CALL THKCRV(4)
C CALL CURVE(T,DS,NPTS,IMARK)
C CALL ENDGR(O)
C
C ******** ••••••••• *** RUDDER INPUTS .******************
C

CALL PHYSOR(4.95,7.75)
CALL AREA2D(2.,2.)
CALL XTICKS(l)
CALL YTICKS(l)
CALL YINTAX
CALL XNAME('TIME (SEC)$',100)
CALL YNAME('RUDDER (DEGREES)$' ,100)
CALL GRAF(TORIG,TSTP,TMAX,DRORIG,DRSTP,DRMAX)
CALL RESET('DOT')
CALL RESET('THKCRV')
CALL GRID(1,1)
IMARK-O .
CALL THKCRV(4)
CALL CURVE(T,DR,NPTS,IMARK)
CALL ENDGR(O)

C
C ****** DISTANCE AWAY FROM NEXT WAY POINT (DAWAY) ******
C

CALL PHYSOR(1.75,5.05)
CALL AREA2D(2.,2.)
CALL XTICKS(l)
CALL YTICI<S(1)
CALL XNAME('TIME (SEC)$',100)
CALL YNAME('DAWAY (SHIP LENGTHS) $',100)
CALL GRAF(TORIG,TSTP,TMAX,DAWAYORIG,DAWAYSTP,DAWAYMAX)
CALL RESET('DOT')
CALL RESET('THKCRV')
CALL GRID(l,1)
IMARK..O
CALL THI<CRV(4)
CALL CURVE(T,DAWAY,NPTS,IMARK)
CALL ENDGR(O)

C
C .************** SPEED VS DESIRED SPEED **********.****
C

CALL PHYSOR(4.95,5.05)
CALL AREA2D(2.,2.)
CALL XTI CI<S (l )
CALL YTICKS(1)
CALL XNAME('TIME (SEC)$',100)
CALL YNAME('U AND UD (FT/SEC) $',100)
CALL GRAF(TORIG,TSTP,TMAX,UGORIG,UGSTP,UGMAX)
CALL RESET('DOT')
CALL RESET('THKCRV')
CALL GRID(1,1)
IMARK..O .
CALL THKCRV(4)
CALL CURVE(T,U,NPTS,IMARK)
CALL DOT
CALL CURVE(T,UD,NPTS,IMARK)
CALL ENDGR(O)

C
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C ********************* MOTOR INPUT .********************
C
C CALL PHYSOR(4.95,2.35)
C CALL AREA2D(2.,2.)
C CALL XTICKS(l)
C CALL YTICKS(l)
C CALL XNAME('TIME (SEC)$' ,100)
C CALL YNAME('RPM $' ,100)
C CALL YINTAX
C CALL GRAF(TORIG,TSTP,TMAX,RPMORIG,RPMSTP,RPMMAX)
C CALL RESET('DOT')
C CALL RESET('THKCRV')
C CALL GRID(l,l)
C IMARK",O
C CALL THKCRV(2)
C CALL CURVE(T,RPM,NPTS,IMARI<)
C CALL ENDPL(O)
C GOTO 100
C
100 CONTINUE
C CALL METAFL(l)
C CALL ENDPL(O)

CALL DONEPL
WRITE (*,*) , DO YOU WANT TO CONTINUE? (YIN)'
READ(*,101) ANS
IF (ANS .EQ. 'Y') GOTO 4
STOP

101 FORMAT(A)
END

111



APPENDIX D.

The values used to design a reduced order observer for sway

velocity(v) varied so much with respect to changes in surge velocity(u) that the following

attempt was made to relate them using curve fitting techniques. The following is the

computer code whi<;h resulted.

********************** SWAY VELOCITY OBSERVER *****************

VHAT - 0.0

THE VALUE OF THE COEFFICIENTS VARY WITH SPEED TO ACCOUNT FOR DIFFERENCES
BETWEEN THIS NON~INEAR MODEL AND THE LINEARIZED MODEL THE OBSERVER IS
BASED ON.(THIS CODE WAS NOT USED, INSTEAD VHAT WAS SET EQUAL TO ZERO.)

FF - -2.0
LLL= -2.275*(U**6)+48.102*(U**5)-406.839*(U**4)+

& 1763.181*(U**3)-4165.344*(U**2)+5265.448*U-3211.956
GG - 1.1329*u - 70.535
HHH a .07584*(U**2) - 3.0509*U + .0003

ZZOBSDOT - HHH*DR + GG*R + FF*VHAT
ZZOBS - ZZOBS + ZZOBSDOT*DELT

VHAT - ZZOBS + LLL*R

FIGURE 48. Adaptive Sway Velocity Observer Code

The coefficients in the above equations and the quality of the curve fitting technique

that provided them are shown in the following graphs. Notice the wide range of values

that occur when dealing with the full nonlinear model. This again shows the extent to

. which the sliding mode control laws must deal with unmodeled behavior.

Recall that ultimately sway velocity was set equal to zero and treated as (1

disturbance.
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DATA
Point 11 X=.5 \'=-1425
F'olnt 12 X=I ',=-704.97
Point I. X=I.5 ','=-464.925
Point 14 X-2 ',=-344.901
Point 15 X=3 Y=-~2"'.S77

Point 16 X=4 Y=-164.866
Point .7 X=5 '(:1:-128.859
Poi fit 18 X-6 Y=-I04.S'54

f'Ol YHOM tAL HODEL: Y-A( M'o ~}:~ ,... A( 1'1-1) .}(,. (1'1-1 " •..• ft <1 H :·:+A' 0)
(oEffie t.n\J.:

A(O)--3211.95616
A<I)=5265.4479
A(2)·-4165.344
A(3)=1763.18129
A(4)=-406.83942
A(5)·48.102117
A(6)=-2.2753449

RE~r-·.S:l ion
Ruld".1
Tot .,
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Figure 49. Graph of LLL vs Time
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F'oi nt .1
F'o;nt 12
I'o;nt 13
I'oi Ilt 14
1'0\ nt IS:
I'o;nt 16:
Pol nt 17:
Point 18:

DATA
X=.5
X=I
X=I.5
X=2
X ... 3
X=4x-,
)(-6

Y=-1.5136
Y=-2.975

Y=-4.413S
Y=~5.798

Y--6.47
'(=-113.969
Y--13.356
'1'=-15.575

P(ll~·tlO'lIAl HODEL: Y-A(t1>*X,'tl+AOI-1 >*><"0"-1 )+ ••• '11<: 1"*:.:",1(0)
Co.fficlfnts:

fHe)-.E100121149
A<I)--3.E1S0S96472
A(2)-.07'7941142,

Soure .. Df SS I·I~' F

R'Qrosslon 2 1813.333 9(I.16t.
5181970613.718 114D.3D

R.sldual , .000 .000
Total 7 160. '3:33
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Figure SO. Graph of HHH vs Speed
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•

bATA
Point II >(~. 5 1'=-69.97
faint .2 >~~ t '''~-69. 403
Point I) X~I.5 "--68.836
f'oint 14 ;,=2 Y~-6e.269

Pedrot .5 X=3 ','=-67.136
Point 16 ~~= 4 ','=-66.002
F'olnt .7 ><=5 ','=-64.869
Point .8 )(=6 1'=-63.735

POLYNOMIAL ~10DEL: Y=A(W·.:; H'A01-1 )<:('01-1 , •••. 'A'. t":(.A(O)
(o~fflc;.nts:

A<e)--70.5366BI~~~

A<I)=1.13J72B049
A(2) =-.000024506

~,Ol,.tr"C if Dr 55 II',. F

RE9re s! ton 2 35.176 1;'. ~,8:::

1602n160.189 I14D.3D

Pe-s i dua.l 5 .000 .000
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Figure 51. Graph of GG vs Speed

115

r..



LIST OF REFERENCES

1. Joo-No Sur Design and Investigation of a Dive Plane Sliding Mode
Compensator for an Autonomous Underwater Vehicle Master's Thesis,
Naval Postgraduate School, Monterey, California, September 198_9.

2. Richard J. Boncal A Study of Model Based Maneuvering Controls for
Autonomous Underwater Vehicles Master's Thesis, Naval Postgraduate
School, Monterey, California, December 1987.

3. NSCS Technical Memorandum 231-78, SDV Simulator Hydrodynamic
Coefficients, by N. S. Smith, J. W. Crane, and D. C. Summey, June 1978.

4. Raymond A. Decarlo, Stainislaw H. Zak, and Gregory P. Matthews
Variable Structure Control ofNonlinear Multivariable Systems
Proceeding of the IEEE, VOL. 76, NO.3, March 1988.

5. Dana R Yoerger and Jean-Jacques E. Slotine Robust Trajectory Control of
Underwater Vehicles IEEE Journal of Oceanic Engineering, VOL. OE-I0,
NO 4, October 1985.

6. Katsuhiko, Ogata Modern Control Engineering Prentice-Hall Electrical
Engineering Series, Prentice-Hall, Inc., Engelwood Oiffs, N. J., 1970.

7. F. A. Papoulias, RChristi, D. Marco, and A. J. Healey Modeling. Sliding
Mode Control Design; and Visual Simulation ofAUV Dive Plane Dynamics
Response Proceeding, 6th International Symposium on Unmanned
Untethered Submersible Technology, Washington D. C., June 1989.

8. Bemard Friendland Control System Design Mc Graw-Hill Book Company,
1986.

9. Vadim I. Utkin Variable Structure System with Sliding Mode IEEE
Transactions on Automatic Control, April 1977.

116

•



•

10. Gordon S. MacDonald Model Based Design and Verification of
Rapid Dive Controller for Autonomous Underwater Vehicles Master's
Thesis Naval Postgraduate School, Monterey, California, March 1989.

11. Healey A. J., Papoulias,F. A. and Lienard D. E. Multivariable Sliding Mode
Control for Autonomous Diving and Steering of Unmanned Underwater
Vehicles Proceedings, International Conference· on Modelling and Control
of Marine Craft, Exeter, U. K., April 20, 1990.

117



118



9. Dan Steiger 1

Marine Systems Group
Naval Research Laboratory
Washington, DC 20032

10. Dick Blidberg 1

Marine Systems Engineering Lab
SERB Building 242
University of New Hampshire
Durham, NH 03824

11. Jennifer Rau, Code U25 1

Naval Surface Weapons Center
Silver Spring, MD 20903-5000

12. Technical Library Branch, Code E23 1

Naval Surface Warfare Center
Silver Spring, MD 20903-5000

13. Naval Engineering Curricular Office, Code 34 1

Naval Postgraduate School
Monterey, CA 93943-5000

'" 14. LCDR David E. Lienard 1
Supervisor of Shipbuilding Office
Newport News Shipbuilding Co.

• Newport News, VA 23607

15. Mr. Glenn Reid, Code U401 1

Naval Surface Warfare Center
Silver Spring, MD 20901

16. Dr. Dana Yoeger 1
Woods Hole Oceanographic Institute
Woods Hole, MA 02543

17. Professor F. A. Papoulias, Code MEPa 1
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA. 93943-5000

119



18. Professor R. McGhee, Code 52Mz 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA. 93943-5000

19. Professor R. Christi, Code 62Cx 1 i

Department of E1eetricial & Computer Engineering
Naval Postgraduate School
Monterey, CA. 93943-5000

20. Sur Joo-No 1
Naval Academy, Jinhae, Ggungnam 602-02
Republic of Korea

•

120



1

..

{



..




